Маленькая книга о черных дырах (Габсер, Преториус) - страница 89

Но прежде чем мы глубоко погрузимся в разбор проблем, связанных с излучением Хокинга и энтропией черных дыр, давайте предпримем быстрый экскурс в области квантовой механики, термодинамики и запутанности. Квантовая механика была разработана в основном в 1920-х годах, и ее основной целью было описание очень маленьких частиц материи, таких как атомы. Разработка квантовой механики привела к размыванию таких базовых понятий физики, как точное положение индивидуальной частицы: оказалось, например, что положение электрона при его движении вокруг атомного ядра не может быть точно определено. Вместо этого электронам были приписаны так называемые орбиты, на которых их действительные положения могут быть определены только в вероятностном смысле. Для наших целей, однако, важно не переходить к этой – вероятностной – стороне дела слишком быстро. Возьмем простейший пример: атом водорода. Он может находиться в определенном квантовом состоянии. Самое простое состояние водородного атома, называемое основным, – это состояние с наименьшей энергией, и эта энергия точно известна. В более общем смысле, квантовая механика позволяет нам (в принципе) знать состояние любой квантовой системы абсолютно точно. Вероятности выходят на сцену, когда мы задаем определенного вида вопросы о квантово-механической системе. Например, если определенно известно, что атом водорода находится в основном состоянии, мы можем спросить: «Где находится электрон?» и по законам квантовой механики получим на этот вопрос лишь некоторую оценку вероятности, приблизительно что-то вроде: «вероятно, электрон находится на расстоянии до половины ангстрема от ядра атома водорода» (один ангстрем равен 10>–10 метров). Но у нас есть возможность посредством определенного физического процесса найти положение электрона гораздо точнее, чем до одного ангстрема. Этот довольно обычный в физике процесс состоит в том, чтобы запустить в электрон фотон с очень короткой длиной волны (или, как говорят физики, рассеять фотон на электроне) – после этого мы сможем реконструировать местоположение электрона в момент рассеяния с точностью, примерно равной длине волны фотона. Но этот процесс изменит состояние электрона, так что после этого он уже не будет находиться в основном состоянии водородного атома и не будет иметь точно определенной энергии. Зато на некоторое время его положение будет почти точно определено (с точностью до длины волны использованного для этого фотона). Предварительная оценка положения электрона может быть проведена только в вероятностном смысле с точностью около одного ангстрема, но как только мы измерили его, мы точно знаем, чему оно было равно. Короче говоря, если мы некоторым способом измеряем квантово-механическую систему, то, по крайней мере в общепринятом смысле, мы «насильно» придаем ей состояние с определенным значением величины, которую измеряем.