Нереальная реальность. Путешествие по квантовой петле (Ровелли) - страница 45

. Насколько же он был прав!

Без понятия поля, введенного Фарадеем, без впечатляющей силы математики, без геометрии Гаусса и Римана эта «некоторая собственная физика» так и оставалась бы непроясненной. Вооружившись новыми концептуальными средствами и математикой, Эйнштейн записал уравнения, которые описывают демокритовскую пустоту, и обнаружил, что ее «некоторая собственная физика» – это красочный и удивительный мир, где вселенные взрываются, пространство коллапсирует в бездонные дыры, время замедляется вблизи планет, а неограниченно расширяющееся межзвездное пространство волнуется и колышется, как поверхность моря…

Всё это звучит как история, рассказанная безумцем, как пустые слова, которые ничего не значат. И всё же это – взгляд на реальность. Или лучше сказать, проблеск реальности, чуть менее смазанный, чем наш мутный и банальный повседневный ее образ. Реальность, которая кажется сделанной из той же ткани, что наши сны[56], но которая, тем не менее, более реальна, чем наши туманные фантазии.

И всё это – результат одной элементарной догадки о том, что пространство-время и гравитационное поле есть одно и то же, и одного простого уравнения, которое я обязан здесь воспроизвести, хотя большинство моих читателей, конечно, не сможет его расшифровать. Тем не менее я делаю это в надежде на то, что читатели смогут уловить отблеск его великолепной простоты:

R>ab – 1/2g>ab + Λg>ab = 8πGT>ab.

В 1915 году изображение было еще проще, поскольку не было члена +Λg>ab, который Эйнштейн добавил двумя годами позже (и который я объясняю далее)[57]. R>ab зависит от римановской кривизны и вместе с 1/2g>ab представляет кривизну пространства-времени; T>ab означает энергию материи; G – та же константа, что и у Ньютона: постоянная, определяющая силу гравитационного взаимодействия.

Вот и всё. Идея и уравнение.

Математика или физика?

Прежде чем продолжить говорить о физике, я хотел бы сделать несколько замечаний о математике. Эйнштейн не был великим математиком. Он сам признавал, что испытывает трудности с математикой. В 1943 году он так ответил на вопрос девятилетней девочки по имени Барбара, которая написала ему о своих трудностях с этим предметом: «Не беспокойся о трудностях, возникающих с математикой, я могу тебя заверить, что мои собственные проблемы [с ней] еще серьезнее!»[58] Это кажется шуткой, но Эйнштейн не шутил. С математикой ему требовалась помощь и разъяснения терпеливых однокурсников и друзей, таких как Марсель Гроссман. Феноменальной была именно его интуиция как физика.

В тот год, когда Эйнштейн завершал создание своей теории, он обнаружил, что соперничает с Давидом Гильбертом, одним из величайших математиков всех времен. По приглашению Гильберта Эйнштейн прочел лекцию в Гёттингене. Гильберт мгновенно понял, что Эйнштейн находится на пороге большого открытия, ухватил основную идею и попытался обойти Эйнштейна, чтобы первым записать правильные уравнения новой теории, над которой Эйнштейн работал достаточно медленно. Финишный рывок двух гигантов мысли был захватывающим состязанием, и на завершающей стадии счет шел буквально на дни. Эйнштейн в этот период выступал с публичными лекциями в Берлине почти каждую неделю и каждый раз представлял новое уравнение, волнуясь, как бы Гильберт не получил решение раньше. Но каждый раз уравнение оказывалось неверным. Пока, наконец, Эйнштейн не нашел правильное уравнение, лишь чисто символически опередив Гильберта. Но все же именно он выиграл эту гонку.