Нереальная реальность. Путешествие по квантовой петле (Ровелли) - страница 61

– с другим объектом. Неопределенно не только его положение, о чем догадался Гейзенберг, – ни одна из переменных не определена для объекта между двумя его последовательными взаимодействиями. Этот реляционный аспект теории становится универсальным.

Когда электрон внезапно появляется в процессе взаимодействия с другим объектом, физические переменные (скорость, энергия, импульс, угловой момент) не принимают произвольные значения. Дирак дает универсальный рецепт, как вычислить набор значений, которые может принимать физическая переменная[73]. Эти значения аналогичны спектру света, испускаемого атомами. Сегодня мы называем набор конкретных значений, которые может принимать переменная, спектром этой переменной по аналогии со спектром, на который раскладываются составляющие света – первого проявления этого феномена. Например, радиус орбиталей для электрона, находящегося вблизи ядра, может принимать только конкретные значения, включенные Бором в свою гипотезу, которые называются спектром радиуса.

Теория также дает информацию о том, какое значение спектра проявит себя в следующем взаимодействии, но лишь в форме вероятностей. Мы не знаем с уверенностью, где окажется электрон, но мы можем вычислить вероятность того, что он появится в том или ином месте. Это радикальное изменение по сравнению с теорией Ньютона, которая, в принципе, допускала возможность предсказывать будущее с полной уверенностью. Квантовая механика привносит вероятность в самое сердце эволюции всех вещей. Эта неопределенность – третий краеугольный камень квантовой механики: открытие того, что вероятность работает на атомном уровне. В то время как ньютоновская физика позволяет с полной определенностью предсказывать будущее, если мы располагаем достаточной информацией о начальном состоянии и можем выполнить необходимые вычисления, то квантовая механика позволяет нам вычислить лишь вероятность события. Это отсутствие детерминизма на малых масштабах – неотъемлемое свойство природы. Природа не обязывает электрон двигаться вправо или влево; он делает это случайно. Видимый детерминизм макроскопического мира связан только с тем фактом, что микроскопические случайности в среднем гасят друг друга, оставляя лишь флуктуации, слишком малые для нашего восприятия в повседневной жизни.

Таким образом, дираковская квантовая механика предоставляет нам две возможности. Во-первых, мы можем вычислить, какие значения способна принимать физическая переменная. Это называется вычислением спектра физической переменной; здесь проявляется