Примени математику (Гашков, Сергеев) - страница 22

Найдя какое-нибудь приближение x>0 корня кубического из данного числа а = х>2 + b, можно значительно улучшить приближение с помощью формулы


Оцените при b>0 погрешность

полученного приближения, рассмотрев отдельно случай, когда число х представляет собой целую часть искомого корня. Найдите приближенное значение
по указанной формуле, оценив погрешность.

Решения


3.1. Пусть число а содержит в десятичной записи m знаков до запятой. Тогда справедливы оценки


из которых следует, что квадрат числа а имеет либо 2m, либо 2m-1 знаков до запятой, так как


Поэтому если данное число имеет четное число n = 2m знаков или нечетное число n = 2m-1 знаков до запятой, то корень квадратный из него имеет m знаков до запятой.

Обычно, чтобы найти количество знаков корня квадратного, цифры десятичной записи исходного числа разбивают на группы справа налево, начиная от запятой и включая в каждую группу по две цифры (кроме, быть может, самой левой группы, в которой в случае нечетного количества этих цифр окажется только одна цифра). Тогда количество полученных групп как раз и совпадет с искомым количеством знаков корня.

3.2. Как и в решении задачи 3.1, заметим, что если число а содержит в десятичной записи m знаков до запятой, то его куб имеет либо 3m, либо 3m-1, либо 3m-2 знака до запятой, так как


Поэтому искомое количество знаков корня кубического совпадает с количеством групп, на которые разбиваются

цифры десятичной записи исходного числа справа налево, считая от запятой по три цифры в группе (кроме, возможно, последней группы).

Аналогично искомое количество знаков корня k-я степени равно количеству групп по k цифр (в последней группе может быть менее k цифр), на которые разбиваются цифры десятичной записи исходного числа, считая от запятой. Это вытекает из неравенств


справедливых для любого числа а, имеющего в десятичной записи m знаков до запятой.

3.3. Для того чтобы свести извлечение корня k-й степени из конечной десятичной дроби к извлечению корня k-й степени из целого числа, достаточно в исходной дроби перенести запятую вправо на подходящее число qk разрядов, а затем извлечь корень из полученного целого числа и перенести запятую у результата влево на q разрядов. Справедливость этого утверждения основывается на равенстве


Из этого же равенства получаем зависимость между числами


а для чисел

зависимость далеко не так удобна:


3.4. Так как 1728 = 2>6*3>8, то нацело из числа 1728 извлекается только корень кубический


Дело в том, что показатели 6 и 3 степеней, в которых простые множители входят в разложение данного числа, имеют лишь один общий делитель, отличный от 1. Этот общий делитель - число 3 - как раз и указывает на возможность извлечения корня соответствующей (третьей) степени.