Но "индивидуальными" цифрами оканчиваются квадраты 0>2 = 0, 5>2 = 25. Таким образом, последняя цифра числа
предположении, что это число целое, равна 5, а первая равна 9, так как
Поэтому искомый корень может быть равен только 95, что и оказывается верным.
Менее простым для вычисления является корень квадратный из числа 3249. Первая цифра этого корня равна 5, так как 5>2 = 25≤32<36 = 6>2, а вторая, если искомое число целое, равна либо 3, либо 7, т. е. вторая цифра либо меньше 5, либо больше 5. Но это можно проверить, сравнив число
с числом 55. Из оценки (см. задачу 1.17)
55>2 = 5*6*100 + 25 = 3025<3249 вытекает, что искомый корень больше 55, а значит, равен 57, что подтверждается проверкой.
Для нахождения числа
в предположении, что оно целое, определим первые две его цифры из неравенств
12>2 = 144≤158<169 = 13>2. Итак, искомый корень трехзначен, начинается цифрами 1, 2, а кончается либо цифрой 4, либо цифрой 6. Так как этот корень больше числа 125, что следует из оценки
125>2 = 12*13*100 + 25 = 15 625<15 876, то он равен 126.
3.8. Подсчет показывает (см. решение задачи 3.6), что остатки от деления на 11 кубов целых чисел от 0 до 10 равны соответственно 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10. Анализ этих остатков показывает, что все они различны и по ним однозначно восстанавливаются соответствующие основания кубов. Поэтому, зная остаток от деления на 11 данного числа, из которого нацело извлекается корень кубический, можно определить остаток от деления на 11 этого корня. Если мы знаем первую и последнюю цифры трехзначного корня кубического (а именно таким он должен оказаться в условиях задачи), то средняя цифра этого корня определяется остатком от его деления на 11.
Например, методами задачи 3.6 вычисляются первая цифра 4 и последняя цифра 3 корня кубического из числа 99 252 847. Сосчитав остаток от деления исходного числа на 11, равный остатку от деления на 11 выражения
7 - 4 + 8 - 2 + 5 - 2 + 9 - 9 = 12 (см. признак делимости - задачу 2.20), т. е. равный числу 1, заключаем, что остаток от деления на 11 искомого корня равен 1. После этого из условия, что число 4*3, ас ним и число 3 - x + 4 = 7 - х, должно давать при делении на 11 остаток 1, мы однозначно определяем среднюю цифру х = 6 корня и в конечном счете сам корень 463. Остается лишь убедиться в том, что он действительно удовлетворяет равенству 463>3 = 99 252 847.
3.9. Предложенный алгоритм в разобранном случае базируется на представлении
273 529 = 5*5*10 000 + (2*5*10 + 2)*2*100 + (2*52*10 + 3)*3 = 500*500 + (2*500 + 20)*20 + (2*520 + 3)*3 = 500