10.5. Пусть А и В - данные точки на местности, между которыми определяется расстояние. Выберем точку С, из которой видны обе точки А я В (рис. 13). На продолжении отрезка АС за точку С отметим точку D на расстоянии АС от точки С. Аналогично на продолжении отрезка ВС за точку С отметим точку Е, для которой СЕ = ВС. Тогда отрезки ED и АВ равны, поскольку они симметричны относительно точки С.
Рис. 13
Если же из-за недостатка места точки Е и D выйдут за пределы досягаемости, то их можно в определенное число раз приблизить к точке С. Тогда отрезок ED будет в то же число раз короче отрезка АВ, так как треугольники ABC и DEC будут подобны.
10.6. Слегка отклонив камыш и держа его в натянутом состоянии, замерим расстояние а между точками А и В, в которых камыш пересекает поверхность воды соответственно в вертикальном и наклоненном положении (рис. 14). Возвратим камыш в исходное состояние и определим высоту b над водой, на которую поднимется при этом точка В наклоненного камыша, заняв исходное положение С. Тогда, обозначив через D основание камыша, а через х - искомую глубину AD, из прямоугольного треугольника ABD находим
x>2 + a>2 = (x + b)>2,
откуда
Рис. 14
10.7. Установив вертикальный шест на некотором расстоянии от дерева, нужно стать в такую точку, из которой верхний конец шеста загораживает в точности верхушку дерева (рис. 15). Тогда, если высота части шеста над уровнем глаз равна а, а расстояния от глаз по горизонтали до шеста и до дерева равны b и y соответственно, то из подобия треугольников можно найти высоту х дерева над уровнем глаз. Наконец, зная свой рост h до уровня глаз, получаем полную высоту дерева
Рис. 15
Заметим, что вычисления и измерения можно упростить, если добиться равенства b = a, которое достигается выбором места установки шеста. Кроме того, можно лечь на землю, что позволит считать h = 0, а в результате высота дерева окажется равной x = y.
10.8. Встав в точку А на некотором расстоянии от пруда (рис. 16), можно расположить перед собой горизонтальную палку длины а так, чтобы расстояния от обоих ее концов до одного глаза (второй глаз при этом лучше закрыть) были равны одному и тому же значению b, а сами концы палки зрительно совместились с крайними точками пруда, видимыми из точки А. Тогда, измерив расстояние у от А до ближайшей точки пруда по прямой, проходящей через середину палки, можно вычислить радиус х пруда, а значит, и его диаметр 2х. Действительно, из подобия соответствующих прямоугольных треугольников находим
откуда 2bx = ах + аy, т. е.
Заметим, что если добиться равенства