(что достигается выбором точки A), то коэффициент при y в последней формуле будет равен 1, а искомый диаметр пруда окажется равным
2x = 2y.
Рис. 16
10.9. Установим вертикальный шест на некотором расстоянии от здания и станем в такую точку, из которой верхушка шпиля зрительно совмещается с верхним концом шеста (рис. 17). Затем, пройдя некоторое расстояние в направлении от здания по прямой, на которой лежит первая точка и проекция А шпиля на горизонтальную плоскость, еще раз проделайте такую же операцию. Пусть высота шеста над уровнем глаз равна а, расстояние от глаз до шеста в первом положении оказалось равным b, а во втором с. Тогда, измерив расстояние у между точками В и С, в которых мы стояли в первом и во втором случаях, можно сосчитать высоту х шпиля над уровнем глаз. В самом деле, обозначим через z расстояние между точками А и В. Из подобия соответствующих треугольников имеем
откуда bx = az, cx = az + ay и cx - bx = ay, т. е.
Рис. 17
Коэффициент при y в последнем равенстве можно сделать равным 1, если в первом положении шеста добиться равенства b = а, а во втором - равенства с = 2а.
10.10. Глубину котлована можно измерить с помощью короткой палки. Для этого достаточно отыскать глазами на дне котлована какой-либо ориентир О и, встав на краю обрыва, установить палку горизонтально так, чтобы основание В палки оказалось на одной вертикали с глазами H, а другой ее конец А зрительно совместился с ориентиром О (рис. 18). Такую же операцию нужно проделать, лежа на краю обрыва и опустив основание С палки по той же вертикали ниже края обрыва. Измерив расстояния b и c от глаз до основания палки в первом и во втором положении соответственно, а также зная свой рост h до уровня глаз, можно вычислить глубину х котлована. Действительно, обозначим через y расстояние по горизонтали от ориентира до проекции края обрыва. Тогда из подобия соответствующих треугольников имеем
откуда
Рис. 18
10.11. Выберем точку С на продолжении прямой АВ за точку В, а также точку D, не лежащую на прямой АВ (рис. 19). Затем выберем точки Е и F на продолжениях прямых BD и CD соответственно за точку D так, чтобы выполнялись равенства BD = DE, CD = DF. Наконец, найдем точку G пересечения прямых EF и AD. Тогда искомое расстояние между точками А а В будет равно длине отрезка EG. Действительно, из равенства треугольников BDC и EDF (по двум сторонам и углу между ними) имеем равенство углов CBD и FED. Поэтому треугольники BAD и EGD равны (по стороне и двум прилежащим к ней углам), а значит, равны и их соответствующие стороны АВ и GE.