Как вы, возможно, помните из школьного курса, одноименные заряды отталкиваются. Если попытаться сжать два атомных ядра, их взаимно положительные заряды будут этому сопротивляться. Но температуры в недрах звезд достигают миллионов градусов — а значит, атомные ядра летают стремительно, поэтому часто и сильно сталкиваются, — а давление настолько высокое, что ядра очень сильно прижимаются друг к другу. Если электростатическое отталкивание удается преодолеть, в игру вступают новые ядерные силы, которые спаивают атомные ядра воедино.
Такое слияние ядер имеет два аспекта. Во-первых, синтезируется атом нового типа, так как в новом ядре будет больше протонов, чем в каждом из двух ядер до слияния. В общем случае, четыре атома водорода сливаются с образованием гелия (два протона водорода становятся нейтронами в новом ядре гелия), три атома гелия сливаются с образованием углерода и так далее. Реальный процесс на самом деле гораздо сложнее, но основной принцип такой.
Во-вторых, при слиянии ядер выделяется энергия. Если рассматривать ядерный синтез в целом, можно ожидать, что суммарная масса атома, образовавшегося в результате слияния, будет равна сумме масс атомов, участвующих в процессе синтеза, — если слепить два меньших комка глины в один, его масса будет суммой масс двух комков, разумеется. Однако физика атомного ядра отличается от того, что мы наблюдаем в привычном макроскопическом мире: атомы подчиняются законам квантовой механики, в которой объекты обладают причудливыми свойствами и ведут себя отрицающим здравый смысл образом.
В процессе слияния ядер небольшое количество массы преобразуется в энергию. По сравнению с этой массой, образующаяся энергия колоссальна; это вытекает из знаменитого уравнения Эйнштейна E=mc>2, согласно которому образующаяся энергия равна массе, умноженной на скорость света в квадрате, а скорость света — очень большое число. Несмотря на это, в пересчете на один атом преобразуемая масса настолько крошечная, что выделяемая энергия невероятно мала — чтобы получить энергию, выделяемую при прыжке блохи, потребуется синтезировать миллионы атомов водорода в гелий.
Но звезды — это огромные хранилища водорода. Как мы обсуждали в главе 2, в ядре Солнца 700 млн т водорода сливаются с образованием 695 млн т гелия каждую секунду! Недостающие 5 млн т преобразуются в энергию, и ее достаточно для того, чтобы питать звезду, позволяя ей излучать тепло и свет, которые нужны нам для жизни. Фактически именно излучаемое тепло противодействует собственным силам тяготения звезды: давление излучения от выделяющейся энергии, направленное наружу, уравновешивает силы тяготения, пытающиеся раздавить звезду. Это равновесие сохраняется, пока не изменяются силы тяготения и выделяемая энергия.