Совместимость. Как контролировать искусственный интеллект (Рассел) - страница 203

; это родственники пропозиционной логики и Байесовых сетей, которые, при всех своих прекрасных свойствах, также не способны выражать комплексные формы знания последовательным образом. Это значит, что глубокие сети, функционирующие в «собственном режиме», требуют огромных схем для репрезентации относительно простых типов общего знания, что, в свою очередь, предполагает изучение огромного количества весов, следовательно, на выходе получаем непомерно много примеров — больше, чем найдется во Вселенной.

Высказывается мнение, что мозг также состоит из цепей, элементами которых являются нейроны, следовательно, цепи могут поддерживать интеллект человеческого уровня. Это верно, но лишь в том же смысле, в каком истинно утверждение, что мозг состоит из атомов. Действительно, атомы могут поддерживать интеллект человеческого уровня, но это не значит, что достаточно собрать атомы вместе, чтобы получить интеллект. Атомы должны быть определенным образом организованы. Компьютеры также состоят из цепей, как в блоках памяти, так и в обрабатывающих модулях, но эти цепи должны быть определенным образом организованы и добавлено программное обеспечение, чтобы компьютер смог поддерживать высокоуровневые языки программирования и системы логического рассуждения. В настоящее время, однако, нет признаков того, что системы глубокого обучения способны выработать эти способности самостоятельно, — и с научной точки зрения бессмысленно ждать от них этого.



Есть и другие причины считать, что глубокое обучение может выйти на плато задолго до достижения универсальной разумности, но я сейчас не ставлю перед собой задачу диагностировать все проблемы. Многие из них перечислены другими специалистами, как входящими в сообщество исследователей глубокого обучения[367], так и сторонними[368]. Дело в том, что, просто создавая все более крупные и глубокие сети, объемные комплексы данных и мощные машины, невозможно создать ИИ человеческого уровня. Мы уже познакомились (в Приложении Б) с мнением генерального директора DeepMind Демиса Хассабиса, что «высокоуровневое мышление и символическое рассуждение» принципиально важны для ИИ. Другой видный эксперт по глубокому обучению Франсуа Шолле выразил эту мысль следующим образом: «Намного большее число приложений совершенно недостижимо для сегодняшних методов глубокого обучения — даже при наличии огромного объема аннотированных человеком данных… Мы должны отходить от прямолинейного картирования „от входа к выходу“ и двигаться к рациональному рассуждению и абстракции»