3 мая 1997 г. начался матч между Deep Blue, шахматным компьютером IBM, и Гарри Каспаровым, чемпионом мира и, вероятно, лучшим шахматистом в истории. Newsweek назвала матч «Последним рубежом человеческого мозга». 11 мая при промежуточной ничьей 2½−2½ Deep Blue обыграл Каспарова в финальной партии. СМИ неистовствали. Рыночная капитализация IBM мгновенно выросла на $18 млрд. По общему мнению, ИИ совершил колоссальный прорыв.
С точки зрения исследователей ИИ, этот матч никоим образом не был прорывом. Победа Deep Blue, какой бы впечатляющей она ни была, всего лишь продолжила тенденцию, наблюдающуюся несколько десятилетий. Базовую концепцию шахматных алгоритмов разработал в 1950 г. Клод Шеннон[83], основные усовершенствования были сделаны в начале 1960-х гг. После этого шахматный рейтинг лучших программ неуклонно рос главным образом благодаря появлению все более быстрых компьютеров, позволявших программам дальше заглядывать вперед. В 1994 г.[84] мы с Питером Норвигом составили численные рейтинги лучших шахматных программ начиная с 1965 г. по шкале, где рейтинг Каспарова составлял 2805. Рейтинги начинались от 1400 в 1965 г. и улучшались почти по идеальной прямой в течение 30 лет. Экстраполяция линии за 1994 г. предсказывала, что компьютеры смогут обыграть Каспарова в 1997 г., — что и случилось.
Итак, с точки зрения исследователей ИИ настоящие прорывы имели место за 30 или 40 лет до того, как Deep Blue захватил внимание общественности. Аналогично глубокие сверточные сети с полностью разработанным математическим аппаратом появились более чем за 20 лет до того, как попали на первые полосы.
Представление о прорывах в области ИИ, складывающееся у общественности из сообщений в СМИ, — ошеломляющие победы над людьми, роботы, получающие гражданство Саудовской Аравии, и т. д. — имеет очень слабое отношение к тому, что реально происходит в исследовательских лабораториях. Там много думают, обсуждают и пишут математические формулы. Идеи постоянно предлагаются, отбрасываются и открываются заново. Хорошая идея — подлинный прорыв — часто остается незамеченной в свое время, лишь впоследствии приходит понимание, что она закладывала фундамент для существенного развития ИИ, например, когда кому-то она приходит в более подходящее время. Идеи апробируются сначала на простых задачах, чтобы показать, что базовые догадки верны, затем на более сложных, в качестве проверки того, насколько хорошо они с ними справляются. Часто оказывается, что идея сама по себе не способна значительно увеличить возможности ИИ, и приходится ждать появления другой идеи, в сочетании с которой первая идея оказывается ценной.