Совместимость. Как контролировать искусственный интеллект (Рассел) - страница 62

антикварного предмета, хотели бы также знать, из чего он изготовлен, кем и когда, историю его использования и владения и т. д. Почему? Очевидно, потому что мы, люди, уже знаем что-то о гравитационных волнах, дорожном движении, визуальных изображениях и антиквариате. Мы используем это знание для принятия решений, какие входящие данные нам нужны для предсказания конкретного результата. Это так называемое конструирование признаков, и, чтобы выполнять его хорошо, нужно ясно понимать специфическую задачу прогнозирования.

Конечно, по-настоящему интеллектуальная машина не может зависеть от людей (конструирующих признаки), которые приходили бы ей на помощь всякий раз, когда нужно научиться чему-то новому. Она должна самостоятельно выяснять, что составляет обоснованное пространство гипотез для обучения. Предположительно, она делала бы это, привлекая широкий спектр релевантных знаний в разных формах, но в настоящее время у нас имеются лишь рудиментарные представления о том, как это осуществить[123]. Книга Нельсона Гудмена «Факты, вымысел и прогноз» — написанная в 1954 г. и являющаяся, пожалуй, самой важной и недооцененной книгой о машинном обучении[124], — вводит особый тип знания, так называемую сверхгипотезу, потому что это помогает очертить возможное пространство обоснованных гипотез. Например, в случае прогнозирования дорожного движения релевантная сверхгипотеза состояла бы в том, что день недели, время суток, местные события, недавние автоаварии, праздники, задержки доставки, погода, а также время восхода и захода солнца могут влиять на дорожную ситуацию. (Обратите внимание, что вы можете построить эту гипотезу на основе собственного базового знания мира, не будучи специалистом по дорожному движению.) Интеллектуальная обучающаяся система способна накапливать и использовать знание этого типа для того, чтобы формулировать и решать новые задачи обучения.

Второе, пожалуй, более важное, — это кумулятивная генерация новых понятий, таких как масса, ускорение, заряд, электрон и сила гравитации. Без этих понятий ученым (и обычным людям) пришлось бы по-своему интерпретировать Вселенную и делать прогнозы на основании необработанных сенсорных данных. Вместо этого Ньютон имел возможность работать с понятиями массы и ускорения, выработанными Галилеем и другими учеными, а Резерфорд смог установить, что атом состоит из положительно заряженного ядра, окруженного электронами, благодаря тому что понятие электрона уже было создано (многочисленными исследователями, продвигавшимися шаг за шагом) в конце XIX в. Действительно, все научные открытия делаются на многоярусных наслоениях понятий, приходящих со временем и опытом человечества.