Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали (Бембенек) - страница 186

Когда фотон отскакивает от электрона, то при столкновении они обмениваются импульсом. Импульс, потерянный фотоном, будет по модулю равен приобретенному электроном — суммарный импульс сохраняется. Ясно, что если мы можем определить, насколько изменился импульс фотона, тогда мы сможем определить импульс электрона до столкновения[212], что даст нам и положение, и импульс электрона одновременно. Однако есть небольшая проблема. На самом деле мы не знаем направление полета падающего фотона после того, как он отскочит от электрона. Мы точно знаем только то, что он принадлежал «диапазону направлений», при движении в каждом из которых он в результате пройдет через линзу, тем самым позволяя нам определить положение электрона (в пределах неопределенности, отмеченной выше). А теперь этот диапазон направлений можно сузить, чтобы уменьшить неопределенность направления импульса фотона. Все, что нам нужно сделать, — это уменьшить диаметр линзы микроскопа.

Ой, ну подождите, ведь неопределенность в положении электрона обратно пропорциональна диаметру линзы, и уменьшение ее диаметра приведет к большей неопределенности в положении. Для решения этой проблемы мы могли бы использовать фотон с меньшей длиной волны. К сожалению, оказывается, что это увеличит неопределенность импульса, благодаря — вы угадали — квантовой природе импульса фотона. Гейзенберг смог использовать свой подход матричной механики, чтобы показать, что определенную пару величин, характеризующих свойства (например, координата и составляющая импульса, направленная вдоль той же оси, от которой данная координата отсчитывается), нельзя определить с произвольной точностью. А именно он обнаружил, что произведение их неопределенностей не может быть меньше, чем постоянная Планка[213]. Это означает, что если мы получаем более точные знания об одной из характеристик, то в результате наше знание о соответствующей дополняющей характеристике становится меньше. Итак, мы знаем одну характеристику почти абсолютно точно — и поэтому о другой не знаем совсем ничего; или, в качестве компромисса, знаем немного — об обоих.

Это не имеет никакого отношения к нашим возможностям (или их отсутствию) измерения этих величин. Наоборот (вернемся к нашему примеру с микроскопом), это означает, что квантовые частицы наподобие электрона просто не обладают точным положением и точным импульсом в один и тот же момент времени; для них эти характеристики существуют только расплывчато, неопределенно. Давайте осознаем, что если Борн использовал квантовую вероятность, чтобы устранить из квантовой механики детерминизм, то в