Время переменных. Математический анализ в безумном мире (Орлин) - страница 103



Что касается работы Торричелли, иезуиты не относились к числу его фанатов. Историк Амир Александер в своей книге «Бесконечно малые: как опасная математическая теория сформировала мир» (Infinitesimal: How a Dangerous Mathematical Theory Shaped the World) объясняет: «Тогда как евклидова геометрия являлась строгой, чистой и неопровержимо верной, новые методы были наполнены парадоксами и противоречиями и с равной вероятностью вели как к ошибке, так и к истине». Иезуиты считали трубу Гавриила анархистской пропагандой, угрозой порядку. «У них была тоталитарная мечта о неопровержимой истине и цели, которая не оставляла места сомнениям и спорам», – говорит Александер. Как подытожил Игнатий[62], еще один иезуит того времени: «То, что кажется нам белым, черно, если так говорит Церковь».

Таким образом, папа запретил бесконечно малые. Торричелли стал математическим преступником, а труба Гавриила – интеллектуальной контрабандой.



Ирония в том, что этот парадокс не так уж трудно разрешить. Как труба Гавриила может иметь внутреннюю часть, которую можно наполнить краской, и внешнюю часть, которую нельзя покрасить? Все это зависит от того, как мы думаем об этом процессе.

Как объясняет математик Роберт Гетнер, парадокс строится на предположении о том, что «площадь поверхности» соответствует тому, что нужно покрасить. Но окрашивание не является двумерным. «Если мы планируем покрасить комнату, – пишет он, – мы не будем просить 1000 квадратных метров краски». Как и бумага, окраска трехмерна. У слоя краски есть толщина, пусть и очень маленькая.

Поэтому первый подход: позволить толщине слоя краски постепенно исчезать, становиться все тоньше и тоньше вместе с трубой Гавриила. Пользуясь этим предположением, возможно покрыть поверхность конечным количеством краски. Парадокс разрешен.



Или, если хотите, вы можете выбрать другой подход. Предположим, что для слоя краски нужна некоторая минимальная толщина. (Это больше похоже на окрашивание в физическом мире; например, краска не может лечь слоем толщиной в

от размера атома.) Таким образом, двигаясь вниз по оси, труба истончается до субатомных масштабов, но со слоем краски этого не происходит. В конце концов он станет в миллиарды раз толще окрашиваемого предмета. Это возвращает нас к нашему первоначальному выводу, что трубу невозможно покрасить. Только теперь еще и невозможно наполнить ее краской, потому что в определенный момент она становится тоньше, чем самая маленькая частица краски.

Если следовать этому предположению, то трубу невозможно ни окрасить, ни наполнить краской. И снова парадокс разрешен.