Время переменных. Математический анализ в безумном мире (Орлин) - страница 15

Джеймс отмел все возражения:

– Я просто выражу все в производных. Они поймут.

И тут прозвенел звонок. Даже учительский рай приходится иногда покидать, чтобы провести уроки. Отправляясь в класс, я оставил чайную чашку на стойке. Надеюсь, я пробормотал слова благодарности Саре – женщине, которая готовила для нас бутерброды и мыла посуду, – но, зная о своих дурных привычках в то время, могу сказать, что случались дни, когда я забывал это сделать.


IV

Универсальный язык

Я люблю изобретать математические слова. По крайней мере, мне нравится пытаться это делать. Жестокая правда состоит в том, что канселтарсис (от англ. сancel – отмена) и алгебраж (пламенный гнев из-за того, что пришлось потратить несколько часов на поиск крошечной алгебраической ошибки) так до сих пор и не прижились. Увы, есть и другие вещи, в которых достижения Готфрида Лейбница превышают мои скромные успехи, поскольку именно он ввел в математический лексикон такие слова, как:

● константа (постоянная) – величина, которая не изменяется;

● переменная – величина, которая изменяется;

● функция – правило, устанавливающее соотношение между данными на входе и на выходе;

● производная – одномоментная величина изменений[7];

● математический анализ – система исчисления, которую он разработал.

А если еще перечислить символы, которые Лейбниц, хотя и не придумал, но ввел во всеобщий обиход (например, ≅ для конгруэнтности, = для равенства и использование скобок для группировки), то становится ясно, что, делая математическую запись в XXI в., мы идем путем Лейбница, проложенным в XVII в. Но даже если это и так, все вышеперечисленные достижения – всего лишь примечания к его самому значительному вкладу из всех.

Букве d.

Это звучит ужасающе просто. Больше напоминает «Улицу Сезам», чем Гарвард Ярд[8]. «Все, что Лейбниц сделал, – это поставил d перед х, – шутил легендарный математик сэр Майкл Атья в 2017 г. – Очевидно, таким образом можно стать знаменитым».

Если уж быть справедливым, то любой ощутимый прорыв для удобства обозначений в ретроспективе кажется очевидным. Как часто вы благодарите Роберта Рекорда, изобретателя знака =, позволившего нам опускать бесконечные «равняется»? Цель математических символов – позволить нам перенести мысли на бумагу. Удачно выбранные обозначения ощущаются столь естественными, что вы забываете об искусственности всего процесса. Не стоит заблуждаться: математическая система обозначений – это технологическое достижение, расширение возможностей нашего мозга другими средствами, такое же сверхъестественное и значительное, как роботизированная конечность.