Время переменных. Математический анализ в безумном мире (Орлин) - страница 21

Например, мы можем продлить прямую в далекое прошлое:



Подумать только! Миллион лет назад Миссисипи была просто громадной рекой, более миллиона километров длиной. Именно тогда она выглядела как гигантская удочка, висящая над Мексиканским заливом. Та, настоящая Миссисипи простиралась на расстояние в пять раз большее, чем от Земли до Луны, и при каждом обороте каменного спутника вокруг нашей планеты окатывала его, как из пожарного шланга.

Поскольку прямую можно продлить в двух направлениях, мы можем развить нашу линейную модель и вперед во времени:



Вот оно! В начале XXVIII в. Миссисипи будет иметь длину менее 1,6 км. Чтобы приспособиться к этому, североамериканский континент сомнется, как скрученная в шарик бумажка, в результате чего Каир и Новый Орлеан обретут свое долгожданное соседство вдоль реки. Между ними будет маячить расселина глубиной в 800 км, разрывающая земную кору.

Я прямо слышу, как вы жалуетесь. «Никакая серьезная математика, – скажете вы, – не может основываться на таком шатком фундаменте».

Ха! А что такое «серьезная» математика? Математика – это логическая игра, глупая шутка, состоящая из абстракций. И, как и во многих играх, прямые – это то, без чего невозможно обойтись для упрощения. Они помогают обойти медленные извилины математического анализа точно так же, как спрямившееся русло укорачивает путь реки. Именно поэтому прямые используются везде – в статистических моделях, в более многомерных преобразованиях, в экзотических геометрических поверхностях и, больше всего, в самой сущности производных.

Возьмем параболу. Если бы у вас были глаза, как у хорошо накачанного кофеином летчика-аса, едва бросив взгляд на рисунок ниже, вы заметили бы: парабола прямой не является.



Вместо этого она является – прошу прощения за использование математического жаргона – кривой. Но давайте посмотрим на нее поближе. Что вы видите теперь?



Это все еще кривая, да. Но у этой кривой меньше изгибов, эта парабола менее параболическая. А посмотрите, что будет, если мы приблизим ее еще больше:



Искривление является мягким, постепенным. Мы словно напеваем себе под нос, чтобы уснуть. Приблизьте его еще, и кривизна станет такой малозаметной, что невооруженный глаз просто откажется ее воспринимать. Фактически линия остается кривой, но для любых практических целей ее можно считать прямой.

И в бесконечно малом масштабе – меньше всех известных размеров, но все же не равном нулю – кривая достигает того, что мы ищем. Она становится – по крайней мере, в нашем воображении – по-настоящему прямой.