Время переменных. Математический анализ в безумном мире (Орлин) - страница 97

Что для него значит теорема о среднем значении и чем он является для теоремы?

Несмотря на величественное название, теорема о среднем значении довольно проста. Представьте себе, что у вас есть некие количественные изменения в определенный период времени – рост, падение, падение, рост. Теорема о среднем значении утверждает, что где-то среди постоянного изменения и движения есть магическое мгновение – момент, когда значение функции равно общему среднему значению.

Возьмем, например, путешествие на автомобиле. Вы проезжаете 200 км за четыре часа, ваша скорость все время меняется. Если вы возьмете на себя труд ее посчитать, то средняя скорость получается 50 км/ч.



Теорема о среднем значении утверждает, что, по крайней мере, в одно прекрасное мгновение во время вашего путешествия вы ехали точно со скоростью 50 км/ч.



Это действительно очень простая логика. Ехали ли вы со скоростью выше 50 км/ч все четыре часа? Нет, тогда бы вы проехали больше 200 км. Ехали ли вы со скоростью ниже 50 км/ч? Снова нет, тогда бы вы проехали меньше 200 км. Была ли ваша скорость все время ниже или выше 50 км/ч и никогда не достигала этой отметки? Нет, если только вы не сидите за рулем тюнингованного DeLorean. Таким образом, мы приходим к выводу, что, по крайней мере, в один момент вы двигались точно со скоростью 50 км/ч.

Еще один пример – скажем, температура воздуха меняется в течение дня. Она повышается. Она понижается. Она возвращается к прежней отметке. Вы даже можете немного поговорить об этом, поскольку «обсуждение погоды» входит в список задач по умолчанию вашего социального программирования.

А теперь как же мы определим общее среднее значение температуры?

Чтобы найти среднее нескольких чисел, мы их складываем, а потом делим на количество данных. Если в результате трех последних тестов вы получили 70, 81 и 89[60], то ваше среднее – это их сумма (240), деленная на количество данных (3). Это дает вам 80. Но в случае с температурой мы имеем бесконечное множество данных в каждый конкретный момент дня. Чтобы суммировать их все, нам понадобится интеграл.



Заметьте, что на чертеже внизу интеграл меньше, чем прямоугольник слева, и больше, чем прямоугольник справа, точно так же как средняя температура ниже максимума, но больше минимума.



О чем говорит нам теорема о среднем значении? Просто о том, что в какой-то момент дня температура равнялась среднему значению.



Ну хватит про теорему о среднем значении. Теперь обратимся к самому Дэвиду Фостеру Уоллесу, чтобы посмотреть, что он сделал с этой маленькой простой теоремой. На одной из страниц «Бесконечной шутки» мы находим «сложную детскую игру» под названием «Эсхатон». Для нее требуется «400 теннисных мячей, таких побитых и лысых, что их больше нельзя использовать для подач». Каждый из них символизирует собой ядерную боеголовку. Игроки делятся на команды (представляющие мировых политиков), а затем получают причитающееся количество боеголовок, высчитанное с помощью теоремы о среднем значении для интегралов.