Слой гуммигутовой эмульсии в 100 микрон — это, в сущности, такая же атмосфера, но только состоящая не из молекул кислорода или азота, а из зернышек гуммигута, которые уже достаточно велики, чтобы их можно было видеть в микроскоп. Вследствие большой массы этих зернышек (по сравнению с молекулами газа) уменьшение плотности с высотой происходит быстрее, чем в обыкновенной атмосфере, окружающей нашу Землю, а именно (в случае гуммигутовых зернышек с диаметром 0,21 микрона) плотность уменьшается вдвое при подъеме на 30 микрон. «Эмульсия, — говорит Перрен, — это атмосфера в миниатюре, тяготеющая к Земле. В масштабе такой атмосферы Альпы представлялись бы несколькими микронами, а отдельные холмы стали бы равны молекулам». Для нас всего важнее, что молекулы этой миниатюрной «атмосферы» — зернышки гуммигута — могут быть взвешены, а это позволяет вычислить и массы молекул обыкновенного газа. Так Перрен сумел сделать то, что казалось совершенно невозможным, — взвесить молекулы и атомы.
Проделаем этот нехитрый расчет. Высота, на которой плотность кислорода уменьшается вдвое, — 5 км. Высота, на которой плотность гуммигута уменьшается вдвое, — 30 микрон. 5 км в 165 миллионов раз больше, чем 30 микрон. Значит, масса гуммигутового зернышка с диаметром в 0,21 микрона превышает массу кислородной молекулы в 165 миллионов раз.
Сколько же весит такой гуммигутовый шарик? Это нетрудно рассчитать, если измерить предварительно, сколько весит кубический сантиметр гуммигута. При этом расчете не следует забывать, что в опытах Перрена зернышки гуммигута находились в воде, а значит, по закону Архимеда, каждый кубический сантиметр гуммигута терял в весе ровно столько, сколько весит кубический сантиметр воды, т. е. 1 грамм. Значит, каждый кубический сантиметр гуммигута в воде весил на один грамм меньше, чем в воздухе. В результате всех расчетов (которые мы пропускаем) получается, что масса зернышка (с поправкой на закон Архимеда) равна 0, 000 000 000 000 01 г.
И это зернышко в 165 миллионов раз превосходит по массе молекулу кислорода. Значит, молекула кислорода весит
0,000 000 000 000 000 000 000 05 г.
А так как масса молекулы кислорода в 32 раза больше массы атома водорода, то масса атома водорода — этого самого легкого из всех атомов — равна
0,000 000 000 000 000 000 000 0016 г.
В грамме водорода содержится, следовательно, 600 000 000 000 000 000 000 000 атомов.
Эти цифры, найденные Перреном, позволили связать употребительную единицу атомной массы — массу атома водорода — с граммом. Масса атома водорода, выраженная в граммах, получается настолько малой, что ее никак невозможно себе представить, — тем не менее ее удалось определить. Атом был взвешен. Важнейшая задача атомной физики была разрешена.