Занимательная квантовая физика (Бронштейн) - страница 82

Впоследствии Гейгер, уже независимо от Резерфорда, разработал и усовершенствовал этот счетчик. «Счетчик Гейгера — Мюллера», представляющий дальнейшее усовершенствование описанного здесь счетчика Резерфорда и Гейгера, является одним из наиболее замечательных и чувствительных приборов современной физики. Но мы не будем описывать его устройство подробно, потому что его основная идея такая же, как у счетчика Резерфорда и Гейгера. Заметим только, что счетчик Гейгера — Мюллера очень чувствителен не только к влетающим в него альфа-частицам, но и к быстрым электронам, и к другим частицам.

Рассмотрим теперь и третий, наиболее замечательный способ «видеть атомы» — способ конденсации водяных паров, придуманный английским физиком Ч. Т. Р. Вильсоном. Этот способ замечателен тем, что он позволяет не только обнаруживать отдельные быстро движущиеся заряженные атомы и электроны, но и видеть и изучать те пути, по которым эти частицы движутся. Основная идея состоит в следующем.

Если в воздухе находятся пары воды или какой-нибудь другой жидкости (например, пары спирта), то они сейчас же превратятся в жидкость, если только достаточно сильно их охладить. Очень простой способ охлаждения заключается в том, чтобы очень быстро увеличить объем сосуда, в котором находятся эти пары. Можно сделать, например, так: устроить камеру в виде трубы, по которой ходит поршень. Если быстро выдвинуть этот поршень, то воздух с водяным паром, находящийся в камере, сразу расширится, а его температура сейчас же упадет. При этом водяной пар превратится в мельчайшие водяные капельки, рассеянные по камере в виде тумана.

Изучая образование этого тумана, Вильсон обнаружил замечательный факт. Он нашел, что туман образуется не всегда. Если пространство в камере совершенно чисто и не содержит даже микроскопических пылинок, то, несмотря на сильное охлаждение камеры при выдвигании поршня, туман не образуется. Водяной пар остается паром, остается, как физики говорят, в переохлажденном состоянии. Но если в камере есть микроскопическая пыль, то пар превращается в жидкость, и притом тем охотнее, чем этой пыли больше. Изучив это явление ближе, Вильсон пришел к заключению, что каждая микроскопическая пылинка является тем центром, вокруг которого происходит конденсация (сгущение, превращение в жидкость) водяного пара. Вокруг каждой микроскопической пылинки образуется капелька воды. Но не только пылинки, плавающие в воздухе, могут служить такими центрами конденсации. Если в воздухе некоторое количество молекул ионизовано, т. е. если в нем есть некоторое число электронов и заряженных электричеством молекул (ионов), то конденсация пара происходит совершенно так же, как если бы там была микроскопическая пыль. Выходит, что не только крохотные твердые пылинки могут служить центрами конденсации, но и ионы (электроны и заряженные молекулы). Водяной пар может оседать на эти ионы, обволакивая их капельками воды. Если в каком-нибудь пространстве содержится переохлажденный водяной пар, который хотел бы сгуститься в жидкость, но не может вследствие отсутствия подходящих центров конденсации, то стоит только образовать в этом пространстве достаточно большое количество ионов (например, рентгеновскими лучами), как пар сейчас же оседает на этих ионах и возникает туман. По-видимому, образование тумана и дождевых капель в нашей атмосфере тоже связано с наличием в воздухе пыли и ионов.