На фотографиях 10 ноября изумленные ученые увидели два эксцентричных колечка переменной ширины от 25 до 80 км: одно в делении Кассини, второе в одной из «щелей» в пределах кольца C. И наконец, кадры, снятые утром 12 ноября, повергли специалистов по небесной механике в шок. Тонкое кольцо F оказалось состоящим из трех «ниточек», одна из которых, шириной 35 км, вращалась отдельно, а остальные две перевивались между собой как минимум восемь раз с шагом 7000 км, образуя гигантскую «косичку». Рядом с ними наблюдались уплотнения неизвестной природы длиной порядка 100 км. Брэдфорд Смит ошеломленно отметил, что в странном мире колец Сатурна удивительное становится обычным, очевидно, кольца все делают правильно – вот только мы не понимаем правил.
Ученые, конечно, догадывались, как красив Сатурн вблизи, но лишь с приходом «Вояджера» эту красоту удалось запечатлеть. На фоне общей коричнево-желтой окраски постепенно выделялись светлые зоны, темные пояса и турбулентные области. Горизонтальных полос было больше, чем на Юпитере, – в общей сложности 24 в одном лишь южном полушарии – и они простирались до более высоких широт. К красному пятну в южной умеренной зоне добавились два коричневых овальных пятна примерно на 42° с.ш., но их так и осталось очень мало. Северная полярная область оказалась значительно темнее южной – очевидно, это был сезонный эффект. В северном полушарии планеты была ранняя весна.
Вся центральная зона атмосферы Сатурна между 40° северной и южной широты оказалась охваченной сильным течением с запада на восток. У экватора скорость этого течения достигала 450–500 м/с, то есть двух третей скорости звука при 100 К, и была вчетверо больше, чем на Юпитере. Именно благодаря ему экваториальные районы Сатурна давали видимый период обращения на 25–30 минут меньше, чем полярные. Встречные джеты (струи) были отмечены на 38° и 55° с.ш., попутные – на 50° и 60° с.ш.
Экваториальное течение охватывало как светлые зоны, так и темные пояса, в то время как на Юпитере к ним были привязаны направления ветров. Это было очень странно и ставило под сомнение принятую для Юпитера модель подъема вещества в зонах и опускания в поясах. Складывалось впечатление, что Сатурн похож на Солнце больше, чем Юпитер, вот только подпитывающие течение маломасштабные вихри не были видны.
В преимущественно водородной атмосфере Сатурна было найдено лишь 6 % гелия (если считать по массе – то 11 % против 19 % у Юпитера). До пролета ученые ожидали увидеть примерно 10 % гелия, что соответствует его доле в составе Солнца и Юпитера, 89 % водорода и 1 % железосиликатных компонентов, происходящих из ядра планеты. Чтобы объяснить «недостачу», Эндрю Ингерсолл из Калифорнийского технологического института предположил, что вчетверо более тяжелый гелий «тонет» в водороде в виде мелких капель, а достигнув теплого ядра, поднимается кверху и питает экваториальное струйное течение. Этот процесс перераспределения вещества сопровождается выделением энергии: Сатурн излучает в 2,2 раза больше, чем получает от Солнца. Кроме уже известных малых составляющих атмосферы – метана, этана и фосфина, – в ходе ИК-наблюдений были найдены аммиак, пропан, ацетилен и метилацетилен. Последние, вероятно, образовались в результате фотодиссоциации метана и реакций радикалов между собой.