Мятежная клетка. Рак, эволюция и новая наука о жизни (Арни) - страница 93

Когда я недавно встретилась с Дезире, она напомнила об одной из самых любопытных и вечных загадок этой болезни. Каждая клетка ее тела несет в себе сломанную копию гена BRCA2, который, как было сказано выше, она унаследовала от своей мамы. Кроме того, из всех триллионов клеток в ее теле большая часть случайно получила повреждение функциональной резервной копии BRCA2, которую она получила от отца. Во всех этих клетках, пострадавших от двух «попаданий» сразу, были испорчены инструменты восстановления ДНК. Так почему опухоль поразила лишь одну ее грудь – и больше ничего? Ее ситуация, впрочем, весьма типична. Диапазон раковых заболеваний, которые, как правило, возникают у людей с наследственными мутациями BRCA1 или BRCA2, крайне узок. Для женщин это опухоли в груди и в яичниках, для мужчин рак простаты и тоже рак молочной железы, хотя гораздо реже. Иногда у представителей обоих полов встречаются рак поджелудочной железы и опухоли головного мозга. При этом интересно, что в плане риска заболеть раком легкого, кишечника или чего-то еще эти необычные люди не отличаются от остальных.

Есть и другие странности. Семьи с наследуемыми ошибками в гене APC страдают от заболевания, при котором в кишечнике появляются тысячи крошечных бугорков, и каждый из них, если им не заниматься, способен перерасти в опухоль. У членов таких семей фиксируется также повышенная вероятность возникновения рака печени и щитовидной железы – но на этом все. Рассматривая население в целом, мы не понимаем, почему раку легкого сопутствуют ошибки в генах EGFR или ALK, в то время как при меланоме повреждается ген BRAF. Почему, наконец, опухоли молочной и предстательной желез широко распространены, а случаи рака сердца исключительно редки? Мы и этого не знаем.

По-видимому, самое достоверное объяснение придет из понимания того, каким образом все ткани организма в конечном итоге становятся такими разными. Все наши клетки содержат один и тот же набор из 20 000 генов, но не все они работают в постоянном режиме. Скажем, клетка печени должна активировать подмножество генов, которые выполняют специфические именно для этого органа функции – например, вырабатывают пищеварительные ферменты и тому подобное, но при этом остальные ее «ненужные» гены не работают. Или возьмем клетку мозга: она должна запускать все программы по производству нейромедиаторов, но никогда не подключается к созданию мышц.

Эти закономерности являются конечным результатом длинной серии решений, которые принимаются на пути от отдельной клетки к эмбриону и от ребенка к взрослому, когда клетки воспроизводятся, мигрируют, специализируются, реагируют на сигналы окружающих их других клеток. Возможно, некоторые из этих путей и развилок делают более вероятными конкретные мутации, а не какие-то другие или же создают для клеток лазейки, позволяющие нарушать правила их биологического сообщества.