Квантовые миры и возникновение пространства-времени (Кэрролл) - страница 12

Квантовая механика подсказывает, что все несколько иначе. Можно измерить значения координаты или скорости электрона (но только по отдельности), и если мы окажемся по-настоящему аккуратными и талантливыми экспериментаторами, то получим ответы. Но то, что предстанет перед нами в результате такого измерения, не есть точное, полное, объективное состояние электрона. Действительно, те конкретные результаты измерений, которые мы получим, нельзя предсказать с полной уверенностью, и в этом отношении квантовая механика разительно отличается от классической. Лучшее, что получится сделать, это предсказать, с какой вероятностью мы увидим электрон в любом конкретном месте или двигающимся с конкретной скоростью.





Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.

Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой, связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x>0, будет записываться как Ψ(x>0).





Вероятность получить такой результат при измерениях равна квадрату амплитуды.

Вероятность конкретного результата = |Амплитуда данного результата|>2

Это простое отношение называется правилом Борна в честь физика Макса Борна>[2]. Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.

Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.