Исходя из резерфордовского представления об атоме, где электроны вращаются вокруг ядра, очевидно, что траектории этих электронов – не прямые линии. Электроны должны двигаться по окружностям или эллипсам. В классическом мире это безусловно означает, что электроны движутся с ускорением и, что не менее очевидно, при этом они должны испускать свет. Каждый атом в вашем теле и все атомы в окружающем мире должны светиться, если классическая механика не врет. Таким образом, электроны должны терять энергию, отдаваемую в виде излучения, и по спирали сваливаться на ядро. В классической физике орбита электрона не может быть стабильной.
Возможно, все ваши атомы действительно излучают свет, просто не такой яркий, чтобы его можно было увидеть. В конце концов, ровно такая же логика применима к планетам Солнечной системы. Они должны испускать гравитационные волны – ускоряющийся массивный объект должен создавать рябь в гравитационном поле, по аналогии с тем как ускоряющийся заряд порождает колебания в электромагнитном поле. Так оно и есть. Если в этом и были какие-то сомнения, то их не осталось в 2016 году, когда исследователи, работающие в обсерваториях LIGO и Virgo, объявили, что гравитационные волны удалось зафиксировать>[8] – они образовались от столкновения двух сближавшихся по спирали черных дыр в миллиарде световых лет от нас.
Однако планеты Солнечной системы гораздо легче черных дыр и движутся медленнее, тогда как каждая из тех двух черных дыр была примерно в тридцать раз тяжелее Солнца. Поэтому гравитационные волны, испускаемые соседствующими с нами планетами, действительно очень слабые. Мощность, генерируемая в виде гравитационных волн при вращении Земли, составляет около 200 Ватт, что равно потреблению энергии нескольких лампочек и абсолютно несущественно по сравнению с другими воздействиями, например с солнечной радиацией и приливными силами. Если бы излучение гравитационных волн было единственной силой, влияющей на орбиту Земли, то потребовалось бы более 10>23 лет, чтобы она врезалась в Солнце. Так что, возможно, то же самое верно и для атомов: может быть, орбиты электронов не совсем стабильны, но их стабильность достаточна.
Это количественный вопрос, поэтому в уравнения классической электродинамики легко подставить конкретные числа и посмотреть, что получится. Ответ получается катастрофическим, потому как электроны должны двигаться гораздо быстрее планет, а электромагнетизм оказывается сильнее гравитации. Количество времени, которое потребовалось бы электрону, чтобы врезаться в ядро атома, получается равным примерно десяти пикосекундам. Это одна стомиллиардная доля секунды. Если бы обычная материя, состоящая из атомов, была столь недолговечна, кто-нибудь уже наверняка обратил бы на это внимание.