Квантовые миры и возникновение пространства-времени (Кэрролл) - страница 34

Эта проблема обеспокоила многих людей. Среди них особого упоминания заслуживает Нильс Бор, который в 1912 году какое-то время работал под руководством Резерфорда. В 1913 году Бор опубликовал серию из трех статей, позже названных просто «трилогия»: в них выдвинул одну из тех отважных, «взятых с потолка» идей, характерных для первых лет развития квантовой теории. Он задал вопрос: что, если электроны не могут по спирали упасть на атомное ядро, так как не имеют возможности находиться на любой «желаемой» орбите, а вместо этого закреплены на конкретных, вполне определенных орбитах? В атоме будет одна орбита с минимальным уровнем энергии, следующая – с чуть более высоким уровнем энергии, и так далее. Но электроны не могут подойти к ядру ближе, чем спустившись на самую нижнюю орбиту, и между орбитами они также находиться не могут. Оказалось, что допустимые орбиты квантуются.





Предположение Бора было не столь экзотическим, каким может показаться на первый взгляд. Физики изучали, как свет взаимодействует с различными газообразными элементами – водородом, азотом, кислородом и так далее. Они обнаружили, что свет, пропущенный через холодный газ, частично поглощается; аналогично, если пропустить электрический ток через трубку с газом, то газ начинает светиться (именно этот принцип лежит в основе работы флуоресцентных ламп, используемых по сей день). Но газы поглощали и излучали свет лишь с определенными частотами, свободно пропуская лучи других цветов. В частности, водород, простейший элемент, в атоме которого всего один протон и один электрон, демонстрировал очень упорядоченную картину частот излучения и поглощения.

В классическом атоме Резерфорда подобное было бы нонсенсом. Но в модели Бора, где электроны могут двигаться лишь по определенным орбитам, такому феномену сразу же нашлось объяснение. Хотя электроны и не могут зависать между разрешенными орбитами, они могут перепрыгивать с одной орбиты на другую. Электрон может упасть с высокоэнергетической орбиты на орбиту с меньшей энергией, испустив свет, обладающий энергией, равной разности энергий этих орбит, либо может перепрыгнуть на более высокоэнергетическую орбиту, поглотив необходимое количество энергии из падающего на него света. Поскольку сами орбиты оказались квантованными, то есть дискретными, мы должны наблюдать взаимодействие электронов и тех квантов света, которые обладают строго определенными энергиями. Вместе с идеей Планка о том, что частота света связана с его энергией, это позволяло объяснить, почему наблюдается излучение и поглощение света лишь определенных частот.