⚪ ⚪ ⚪
Обширная интеллектуальная работа была проделана за первые три десятилетия двадцатого века. В течение XIX века физики собрали многообещающую картину, отражавшую природу материи и сил. Материя состоит из частиц, а силы передаются через поля, и все они подчиняются законам классической механики. Однако, столкнувшись с экспериментальными данными, они были вынуждены выйти за рамки этой парадигмы. Стремясь объяснить исходящее от объектов излучение, Планк предположил, что свет состоит из дискретных порций энергии, а Эйнштейн развил эту идею, допустив, что свет существует в форме частицеподобных квантов. Тем временем факт стабильности атомов и наблюдение за тем, как газы излучают свет, позволили Бору предположить, что электроны могут двигаться лишь по определенным разрешенным орбитам, иногда перескакивая с одной на другую. Гейзенберг, Борн и Йордан оформили эту историю о вероятностных прыжках в полноценную теорию – матричную механику. Взглянув на нее под другим углом, де Бройль указал, что если мы будем трактовать материальные частицы, например электроны, как волны, то сумеем вывести квантованные орбиты Бора, а не просто постулировать их существование. На основании этого утверждения Шрёдингер разработал собственную полноценную квантовую теорию, в конечном итоге продемонстрировав эквивалентность матричной и квантовой механики. Несмотря на все чаяния, что волновая механика позволит избавиться от вероятностей как фундаментальной части теории, Борн показал, что правильное понимание волновой функции Шрёдингера таково: эта функция возводится в квадрат и получается вероятность наблюдать тот или иной результат измерения.
Уф! Неблизкий путь, проделанный за удивительно короткий период – от наблюдений Планка, сделанных в 1900 году, до Сольвеевского конгресса в 1927 году, когда новая квантовая механика была конкретизирована раз и навсегда. Колоссальная заслуга физиков начала XX века заключается в том, что они были готовы работать, опираясь на экспериментальные данные, и, пойдя таким путем, полностью отбросили фантастически успешные ньютоновские представления о классическом мире.
Однако их успехи в осознании последствий собственных открытий впечатляют гораздо меньше.
4
Что не может быть познано, поскольку не существует
Неопределенность и дополнительность
Как-то раз останавливает постовой Вернера Гейзенберга за превышение скорости.
«Вы знаете, с какой скоростью ехали?» – спрашивает офицер.
«Нет, – отвечает Гейзенберг, – но я точно знаю, где нахожусь!»
Думаю, все согласятся, что шутки физиков – самые смешные. Но физическую суть они передают не слишком точно. Этот бородатый анекдот предполагает знакомство со знаменитым принципом неопределенности Гейзенберга, который обычно объясняется так: невозможно одновременно с точностью определить и скорость объекта, и его положение в пространстве. Но реальность гораздо глубже.