Фейнмановские лекции по физике 2 (Фейнман) - страница 26

составные части с массой покоя m>0внутри объекта M, то можно было бы говорить, что часть массы M есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри Mкакие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!

А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mc>2тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m>0c>2, и говорим, что полная энергия частицы равна ее массе движения, умноженной на с>2, а когда тело ос­тановится, его энергия есть его масса в покое, умноженная на с>2.

И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m>0/Ц(l-v>2/c>2) очень редко употребляется на практике. Вместо этого незаменимыми ока­зываются два соотношения, которые легко доказать:

Е>2-P>2c>2=M>0>2c>4 (16.13)

и

Р=E>v/c (16.14)

Глава 17

ПРОСТРАНСТВО - ВРЕМЯ

§ 1. Геометрия пространства-времени

§ 2. Пространственно-временные интервалы

§ 3. Прошедшее, настоящее, будущее

§ 4. Еще о четырехвекторах

§ 5. Алгебра четырехвекторов

§ 1. Геометрия пространства-времени

Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важ­но ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.


Координаты и время (х, y,z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измерен­ные внутри «движущегося» со скоростью uкосмического корабля:

Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой