Фейнмановские лекции по физике 2 (Фейнман) - страница 42

DW=(xF>y-yF>x) Dq, (18.11)

т. е. работа, которую мы проделали, равна углу, на который было повернуто тело, умноженному на какую-то странную комбинацию сил и расстояний. Эта «странная комбинация» и есть момент. Таким образом, определяя изменение работы как момент, умноженный на угол поворота, мы получаем формулу, выражающую момент через силы. (Это понятно. По­скольку момент не является полностью новым понятием, не зависящим от механики Ньютона, то он должен определенным образом выражаться через силу.)


Пусть теперь на тело действует несколько сил. Тогда ра­бота, производимая этими силами, равна сумме работ от каж­дой силы, так что DW будет иметь вид суммы множества членов: по одному для каждой из сил, однако каждый из них пропор­ционален Dq. Эту величину Dq можно вынести за скобку и получить, что работа равна сумме моментов от всех действу­ющих сил, умноженной на Dq. Эту сумму можно назвать пол­ным моментом сил и обозначить t. Как видите, моменты скла­дываются по обычным законам алгебры, однако, как вы узнаете после, это происходит из-за того, что мы ограничиваемся только плоскими вращениями. Эта ситуация напоминает одномерное движение, в котором силы просто складываются алгебраически; ведь все они в этом случае действуют вдоль одной и той же прямой. В трехмерном пространстве все более сложно. Таким образом, для двумерного вращения

Нужно только помнить, что это справедливо лишь для вра­щения вокруг одной оси. Если брать различные оси, то все х>i>и y>iизменятся, соответственно изменяются (обычно) и величины моментов.

Отвлечемся теперь на минуту и заметим, что предыдущий способ введения момента дает очень важный результат для тела, находящегося в равновесии: если сбалансированы все силы, действующие на объект, и перемещающие и вращающие, то нужно, чтобы не только полная сила была равна нулю, но и полный момент, так как при малом перемещении объекта, находящегося в равновесии, никакой работы не производится. Следовательно, из того, что DW=tDq=0, можно заключить, что сумма всех моментов должна быть равна нулю. Таким образом, для равновесия необходимо выполнение двух условий: а) сумма всех сил равна нулю и б) сумма всех моментов тоже равна нулю. Попробуйте доказать сами, что в двумерном случае достаточно равенства нулю суммы моментов сил отно­сительно какой-либо одной оси.


Вернемся теперь к случаю одной силы, действующей на тело, и попытаемся выяснить, что же геометрически означает странное выражение xF>y-yF>x. На фиг. 18.2 вы видите силу F, приложенную в точке Р.


Фиг. 18.2. Вращающий момент, создаваемый силой.