Фейнмановские лекции по физике 2 (Фейнман) - страница 41

(фиг. 18.1).


Фиг. 18.1. Кинематика двумер­ного вращения.

Через промежуток времени Dt тело целиком по­вернется на угол Dq, а вместе с ним повернется и наша частица. Хотя расстояние от нее до оси вращения О остается тем же самым, она уже переместится в другую точку, Q. Первое, что хотелось бы знать, это насколько изменятся расстояния х и y. Если обозначить через rдлину ОР, то длина PQбудет равна rDq (просто по определению угла). Тогда изменение расстояния х будет равно проекции rDq на ось х

Dz=-PQsinq =-гDqy/r=-y/Dq. (18.6)

Аналогично,

Dy=xDq. (18.7)

Если тело вращается с угловой скоростью w, то, деля обе части равенства (18.6) и (18.7) на Dt, найдем компоненты скорости частицы

v>x=-wx и v>y=wy.(18.8)


Если же нам требуется абсолютная величина скорости, то мы просто пишем

Не удивительно, что абсолютная величина скорости получи­лась равной wr; это же очевидно; ведь полное пройденное рас­стояние равно rDq, а поэтому расстояние, пройденное за 1 сек, будет rDq/Dt, или rw.

Перейдем теперь к рассмотрению динамики вращения. Здесь следует ввести новое понятие — силу. Давайте посмотрим, нельзя ли изобрести нечто, играющее ту же роль, что и сила в линейном движении. Это нечто мы будем называть моментом силы, или просто моментом. Обычно под силой мы понимаем нечто, заставляющее покоящееся тело двигаться, а то, что заставляет тело вращаться, есть «вращающая», или «крутящая», сила; ее мы называем моментом. Таким образом, качественно момент силы — это кручение; но что такое момент силы коли­чественно? Количественную теорию момента можно получить, изучая работу, затраченную на поворот тела. Этот подход очень хорош и для определения силы: если мы знаем, какая требуется работа, чтобы совершить данное перемещение, то знаем и силу. Чтобы продолжить соответствие между угловыми и линейными величинами, мы должны приравнять работу, которая производится при повороте тела на какой-то угол, к произведению момента на этот угол. Другими словами, при таком определении момента теорема о работе имеет абсолютный аналог: работа есть сила на перемещение, или момент на угол. Это сразу говорит нам, что такое момент количественно. Рас­смотрим, например, твердое тело, вращающееся вокруг оси, на которое действуют различные силы. Сконцентрируем сначала наше внимание на одной силе, приложенной к некоторой точке (х, у). Какую работу мы затрачиваем, поворачивая тело на некоторый малый угол Dq? Нетрудно понять, что она равна

DW=F>xDx+F>yDy. (18.10)

Теперь нужно только подставить выражения (18.6) и (18.7) для Dx; и Dy и получить