Фейнмановские лекции по физике 2 (Фейнман) - страница 53

/>3pD>2H. Таким образом, (2pх)(>1/>2HD)=>1/>3pD>2H, или x=D/3. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у=Н/3. Вообще центр масс любого однородного треугольника находится в точке пере­сечения трех его медиан (линий, соединяющих вершину тре­угольника с серединой противоположной стороны), которая от­стоит от основания на расстоянии, равном >1/>3 длины каждой медианы.

Как это увидеть? Рассеките треугольник линиями, парал­лельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую полоску пополам, следовательно, центр масс должен лежать на медиане.

Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положе­ние труднее. Пусть rрадиус круга, а x — расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2pх, а площадь полукруга равна >1/>2pr>2 (половине площади круга). Так как объем шара равен, конечно, 4pr>3/3, то отсюда находим

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок прово­локи в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заме­тается» плоской кривой при ее движении, аналогичном выше­описанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассмат­ривать как очень узкую полоску и применять к ней предыдущую теорему.)

§ 3. Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид


Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (z>2>i+y>2>i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что рас­стояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.


В качестве простого примера рассмотрим стержень, вра­щающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3).


Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, прохо­дящей через один из его концов.