Фейнмановские лекции по физике 2 (Фейнман) - страница 61

Пусть Джо для своих координатных осей х, у, z определял все моменты сил и все угловые моменты во всех плоскостях. Однако Мик направил свои оси х', у', z' по-другому. Чтобы немного облегчить задачу, предположим, что повернуты только оси x и y. Мик выбрал другие оси х' и у', а его ось zосталась той же самой. Это означает, что плоскости yzи zxу него новые, а поэтому моменты сил и угловые моменты у него тоже окажутся новыми. Например, его момент сил в плоскости х'у' окажется равным

x'F>y'-y'F>x' и т. д. Следующая задача — найти связь между новыми и старыми моментами сил. Ее вполне можно ре­шить, установив связь одного набора осей с другим. «Да это же напоминает то, что мы делали с векторами»,— скажете вы. Действительно, я собираюсь делать в точности то же самое. «А не вектор ли он, этот момент сил?» спросите вы. Действительно, он — вектор, однако этого нельзя сказать просто так, без всякого математического анализа. Так что следующим этапом должен быть анализ. Однако мы не будем подробно обсуждать каждый шаг, а только покажем, как это все работает. Моменты сил, вычисленные Джо, равны


В этом месте мы сделаем отступление и заметим, что в подоб­ных случаях, если оси координат выбраны неправильно, для некоторых величин получается неверный знак. Почему бы не написать t>yz=zF>y-yF>z? Этот вопрос связан с тем обстоятель­ством, что система координат может быть либо «левая», либо «правая». Однако выбрав (произвольно) знак, скажем, у t>xy>, можно всегда определить правильное выражение для остальных двух величин путем замены по какой-либо из двух схем:


Теперь Мик подсчитывает моменты сил в своей системе.


Пусть одна система координат повернута на угол q по отноше­нию к другой, так что ось z осталась той же самой. (Угол q ничего не имеет общего с вращением объекта или с чем-то про­исходящим внутри системы координат. Это просто связь меж­ду осями, используемыми одним человеком, и осями, исполь­зуемыми другим. Мы предполагаем, что он остается постоян­ным.) При этом координаты в двух системах связаны так:

x'=xcosq+ysinq,

y'=уcosq-хsinq, (20.3)

z'=z.


Точно таким же образом, поскольку сила является вектором, она преобразуется в новой системе координат так же, как х, у и z. Просто, по определению, объект называется вектором тогда и только тогда, когда различные его компоненты преобра­зуются как х, у и z


Теперь можно определить, как преобразуется момент силы. Для этого в уравнение (20.2) нужно просто подставить вместо х', у' и z' выражение (20.3), а для F>x>' , F>y>', и F>z>'-выражение (20.4). В результате для t