Фейнмановские лекции по физике 5 (Фейнман) - страница 10

токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отме­тить, что, согласно уравнению (1.8), магнитных зарядов, по­добных электрическим зарядам, стоящим в правой части урав­нения (1.6), не существует. Они никогда не были обнаружены.

Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий при­мер. Представьте конденсатор, составленный из двух плоских пластин.


Фиг. 1.9. Магнитная палочка, показанная на фиг. 1.6,

может быть заменена катушкой, по которой течет

ток.

На провод по-прежнему будет действовать сила.



Фиг. 1.10. Циркуляция поля В по кривой С опре­деляется либо током, текущим сквозь поверх­ность S>1либо быстро­той изменения потока, поля Е сквозь поверх­ность S>2.

Он заряжается током, притекающим к одной из пла­стин и оттекающим от другой, как показано на фиг. 1.10. Про­ведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S>1, которая пересечет провод. В со­ответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с>2). Но что будет, если мы натянем на кривую другую поверхность S>2 в форме чашки, донышко которой расположено между пласти­нами конденсатора и не касается провода? Через такую поверх­ность никакой ток, конечно, не проходит. Но ведь простое изме­нение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в пра­вой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S>1 и S>2возникает одинаковый эффект. Для S>2циркуляция вектора В выражается через сте­пень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное урав­нение.

С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсо­единим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохожде­ние тока по проводу. Стоит лишь в поле магнита качнуть про­волоку, как по ней сразу пойдет ток. Это новое следствие урав­нения (1.1): электроны в проводе почувствуют действие силы F=qvXB. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вер­тикально направленным полем В магнита приводит к силе, действующей на электроны