Цифровой журнал «Компьютерра» № 196 (Журнал «Компьютерра») - страница 23

В 2010 году Юрген Штайнакер и его коллеги продвинулись ещё дальше — дальше в инфракрасный диапазон. Они использовали для наблюдений космический телескоп «Спитцер» и обнаружили пепельный свет межзвёздной пыли уже на длинах волн до 4,5 микрон. Поскольку в этом диапазоне пыль ещё более прозрачна, рассеянное ею излучение несёт информацию из более сконденсированных частей межзвёздных облаков. Плотные газопылевые сгустки в этих облаках называются ядрами, и потому Штайнакер с коллегами предложили для звёздного инфракрасного света, отражённого пылью в ядрах, термин «coreshine».

Пепельный свет удобен в качестве инструмента для изучения межзвёздных облаков и ядер по нескольким причинам. Во-первых, он высвечивает структуру облака везде, а не только там, где есть фоновые звёзды. Во-вторых, он, в отличие от собственного излучения пыли, может наблюдаться с весьма приличным угловым разрешением и притом с поверхности Земли. В-третьих, интерпретация любых подобных наблюдений требует некоторых предположений о природе пылинок. Так вот, чтобы вытащить информацию из наблюдений рассеянного излучения, таких предположений требуется сделать меньше, чем при анализе наблюдений собственного излучения.

Впрочем, есть одно предположение о природе пылинок, без которого разобраться в рассеянном пепельном свете облаков невозможно. И именно оно привлекает к пепельному свету максимум интереса: это предположение о размере пылинки. Дело в том, что она наиболее эффективно поглощает и рассеивает излучение, длина волны которого не превосходит размера пылинки. Именно поэтому пыль становится прозрачнее в длинноволновом инфракрасном диапазоне. Способность пыли в ядрах межзвёздных облаков рассеивать излучение с длиной волны около 4–5 микрон означает, что и сами пылинки (по крайней мере самые крупные из них) имеют примерно такой размер. Но для пыли вне облаков уже давно установлено верхнее ограничение по размерам в десятые доли микрона, то есть на порядок меньше.

Таким образом, существование пепельного света облаков говорит о том, что пылинки в них раз в десять превосходят по размерам таковые в «обычной» (не облачной) межзвёздной среде. Иными словами, попав в облако, пылинки начинают расти. А рост пылинок — это первый шаг к образованию планет. Нет, никто, конечно, не предполагает, что в облаках могут сами по себе конденсироваться планеты: при невысокой облачной плотности этот процесс занял бы слишком много времени. Собственно говоря, даже с микронными пылинками возникают определённые проблемы: чтобы вырасти до таких размеров, пылинке требуется десяток миллионов лет, а межзвёздные облака (по современным оценкам) живут примерно половину этого срока. Поэтому обнаружение крупных пылинок привело к некоторому оживлению в стане сторонников медленной модели звездообразования, считающих, что