Всё-таки, прав был Максвелл насчёт двух типов электрических токов. Есть движение заряженных частиц, а есть продвижение зарядовых разбалансов. В обоих случаях происходит перенос электричества! Причём, программы, которые управляют переносом электричества, обеспечивают и необходимые для этого превращения энергии. В кинетическую энергию заряженной частицы превращается не энергия «поля», а часть собственной энергии частицы, т.е. часть её массы. А энергия зарядового разбаланса появляется за счёт убыли энергии связи в атомарной связке «протон-электрон». Зарядовый разбаланс массой не обладает, и кинетической энергией — тоже; он безынерционен!
Эта концепция сразу же заработала на всю свою эвристическую мощь. И, в первую очередь — применительно к чему? Да к металлам! Про которые детям ещё в школе впаривают, что электричество в них переносится только свободными электронами. Бедные дети… они такие доверчивые! И ведь сразу не догадаешься, что детям впаривают полуправду — которая, как известно, хуже чем ложь. Кто бы сомневался в том, что свободные электроны в металлах есть — на это указывает хотя бы термоэмиссия, а также холодная эмиссия, т.е. вытягивание электронов из металла сильным электрическим «полем». Но много ли свободных электронов в металлах? — вот в чём вопрос. Теория тут уже давно впереди паровоза бежит — аж запыхалась. Теоретик Друде, будучи в здравом уме и трезвой памяти, клялся и божился, что для той хорошей электропроводности, какая есть у металлов, на каждый атом в металле должон приходиться один свободный электрон. Ни больше, ни меньше. Т.е., атомы в куске металла должны быть тотально ионизованы. Эх, подвела трезвая память теоретика Друде: он позабыл разъяснить — по мановению какой волшебной палочки все атомы скопом ионизуются — да при температуре не в миллиарды градусов, а при какой-нибудь там комнатной. Загадка природы! У нас в деревне в таких случаях говорят: «Листья дуба падают с ясеня…» Кстати, есть ведь металлы, атомы которых имеют всего по одному валентному электрону. Если все эти атомы отдадут по электрону ради нужд хорошей электропроводности, то у них не останется возможностей образовывать химические связи друг с другом. Тогда на чём же держится металлическая кристаллическая решётка? Теоретики выработали ответ и на этот вопрос. Будучи в здравом уме и трезвой памяти, они свистнули на помощь квантовую механику — и с тех пор клянутся и божатся, что структура металлов держится на совершенно особой связи, порождаемой газом тех самых свободных электронов. То есть, уже не вполне свободных. Видите ли, у квантовой механики — дар похлеще, чем у царя Мидаса. Всё, к чему тот прикасался, превращалось в золото — через это бедняга и кончился. А всё, к чему прикасается квантовая механика, превращается в мешок с дерьмом, вывернутый наизнанку. После такого чудесного прикосновения квантовой механики, свободные электроны в металлах стали считаться немного связанными. Причём, каждый из них стал считаться немного связанным не с каким-нибудь одним атомом, а со всеми сразу. По-научному это звучит так: «Каждый электрон из газа свободных электронов «как бы принадлежит сразу всем атомам решётки». Понимаете? Это условно-беременной женщиной быть нельзя, а условно-свободным электроном — погрязшим в лёгких связях со всеми атомными ядрами в своём куске — можно! Была бы на то воля сочинившего сие!