Для сравнения: в XIX веке физика не с жиру бесилась, а в трудах и скорбях искореняла заблуждения об электрических флюидах, и укрепляла истину о том, что носителями электричества являются частицы вещества. Например, Фарадей исследовал прохождение постоянного тока через растворы электролитов. Натурально, ток в электролитической ванне обеспечивался переносом вещества к тому и другому электроду: растворённые газы весело бурлили, выделяясь на электродах в виде пузырёчков, а растворённые металлы — организованно, послойно — оседали на катоде, формируя гальваническое покрытие. Что особенно важно: прохождение определённого количества электричества через электролитическую ванну вызывало выделение на электроде совершенно определённого количества того или иного растворённого вещества. Правда, тут не последнюю роль играла ещё и валентность этого вещества. Вмазывание в электрод некоторого количества двухвалентных частиц требовало прохождения в два раза большего количества электричества, чем в случае такого же количества одновалентных частиц. Вот когда замаячил вывод о дискретном характере электричества, т.е. об элементарном электрическом заряде!
И вот, до сих пор считается, что ток в электролитах — это движение ионов, которые как раз бывают однократные, двукратные, и так далее. Всё это здорово — но, дорогой читатель, не терзают ли вас смутные сомнения? Вот в ванне — водный раствор какой-нибудь алюминиевой соли. Алюминий трёхвалентен, и опыт подтверждает, в согласии с законами электролиза Фарадея: для осаждения на катод N атомов алюминия, требуется пропустить через ванну в три раза большее количество электричества, чем для осаждения N одновалентных атомов. Если кто подзабыл: количество прошедшего электричества определяют, измеряя гальванометром силу тока в цепи, и умножая эту силу тока на время, в течение которого ток тёк; а количество осаждённых атомов находят, деля массу осаждённого вещества на массу одного атома. Как видно, вполне прозрачная арифметика. Которая вполне прозрачно намекает на то, что атомы алюминия в растворе и впрямь трижды ионизованы — к торжеству теории электролиза… Эх вы, фанаты мокрых технологий! Знаете, сколько составляет сумма энергий связи трёх внешних электронов алюминия? Аж 53 эВ! Это чудовищная, по химическим меркам, величина. Тепловая трёхкратная ионизация атомов алюминия, при обычных температурах, совершенно исключена. Что же это за силушки богатырские, которые делают из атома алюминия трёхкратный ион в растворе? На это академики, с сурьёзным выраженьем на лице, разъясняют — молекула соли, мол, состоит из уже готовых положительных ионов металла и отрицательных ионов остатка, и дипольные молекулы воды просто растаскивают молекулу соли на эти ионы. Ага. «Просто»! Дяденьки, вы в вузах учились или просто их окончили? Каким это образом пара тройных противоположных зарядов может быть растащена слабо-дипольными молекулами — которые ещё и друг к дружке выстраиваются «мордочкой к попке»? Или эти слабо-дипольные молекулы способны по команде напрячься, да ещё хором пукнуть? Тогда, конечно, никакая молекула соли не устоит. Только, если её таким авральным способом растащат на ионы, что же помешает эти ионам воссоединиться? «Вот это хороший вопрос, — обрадуются академики, потому что на него у них есть хороший ответ. — Каждый ион в воде окружён гидратной оболочкой. Вот они-то, гидратные оболочки, и не дают ионам воссоединяться!» Да… хорошо звучит ответ. Только, дяденьки, вы прикиньте напряжённость «поля», порождаемого ионом на расстоянии от него, равном среднему расстоянию между ионами в воде, и сравните её с напряжённостью «поля», создаваемого электродами — при которой начинает течь ток через электролит. Видите, вторая из них на много порядков меньше первой. Ну, теперь попробуйте объяснить — почему ваши хвалёные гидратные оболочки ведут себя по двойным стандартам. А именно: пресекают воссоединение ионов, но любезно разрешают им двигаться к электродам. Сильную тягу сводят на нет, а несоизмеримо более слабую тягу — вполне допускают!