и d даны,
a>n+1 = a>n + d при
n ≥ 1.
Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому последующего и предыдущего членов:
.
Это отражено в названии последовательности: арифметическая прогрессия. Верно и более общее свойство:
при
n≥k.
Справедливы следующие формулы (через S>n обозначена сумма первых n членов арифметической прогрессии):
a>n = a>1 + (n-1)d, (1)
, (2)
. (3)
С формулой (3) связан интересный эпизод из жизни немецкого математика К.Ф. Гаусса (1777-1855). Когда ему было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от 1 до 40 включительно:
1+2+3+4+5+...+40».
Каково же было удивление учителя, когда один из учеников (это был Гаусс) через минуту воскликнул: «Я уже решил». Большинство учеников после долгих подсчетов получили неверный результат. В тетради Гаусса было только одно число, но зато верное.
Вот схема его рассуждений. Сумма чисел в каждой паре равна 41:
1, 2, 3, ... , 20
+
40, 39, 38, ..., 21
------------------
41, 41, 41, ..., 41
Таких пар 20, поэтому искомая сумма равна 41·20 = 820.
Арифметические прогрессии и их свойства изучались математиками с древних времен. Греческих математиков интересовала связь прогрессий с так называемыми многоугольными числами (см. Фигурные числа), вычислением площадей, объемов, красивыми числовыми соотношениями типа:
1 = 1>2 1 + 3 = 2>2 1 + 3 + 5 = 3>2 1 + 3 + 5 + 7= 4>2 | 1 = 1>3 3 + 5 = 2>3 7 + 9 + 11 = 3>3 13 + 15 + 17 + 19 = 4>3 |
Большой популярностью даже в наши дни пользуются магические квадраты (см. Магические и латинские квадраты). Это квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны (рис. 1). Такой магический квадрат изображен на гравюре немецкого художника А. Дюрера «Меланхолия».
Рис. 1
Асимптота кривой – это прямая, к которой кривая приближается сколь угодно близко при удалении в бесконечность. Представьте себе мчащийся по прямолинейному шоссе автомобиль и всадника, скачущею по полю с той же скоростью, но направленной в каждый момент на автомобиль. Маршрут всадника в этом случае будет кривой линией, называемой трактрисой, для которой линия шоссе является асимптотой. Если кривая, заданная уравнением y=f(x), удаляется в бесконечность при приближении x к конечной точке a, то прямая x = a называется вертикальной асимптотой этой кривой. Такими асимптотами являются прямая x=0 для гиперболы y = 1/x, каждая из прямых x=kπ