Энциклопедический словарь юного математика (Савин) - страница 45

 соответствует большее значение y, то функция называется возрастающей в этом промежутке. Если же с возрастанием аргумента функция убывает, так что большему значению x соответствует меньшее значение y, то ее называют убывающей. Так, например, функция на рис. 1 – возрастающая в промежутках от a до b, от c до d и от f до g и убывающая в промежутках от b до c, от e до f и от g до h. На промежутке от d до e функция принимает постоянное значение, не изменяется, можно сказать, что на промежутке от c до d функция f(x) не убывает, а на промежутке от e до f не возрастает. Функции возрастающие, убывающие, неубывающие и невозрастающие объединяются общим названием «монотонные».

Для функции, заданной аналитически (формулой), построение ее графика может потребовать большого труда. Исследование характера изменения функции, нахождение промежутков возрастания и убывания, экстремумов функции можно осуществить с помощью ее производной.

Пусть функция y = f(x) в каждой точке некоторого интервала имеет производную. Для того чтобы функция возрастала на этом интервале, необходимо и достаточно, чтобы производная f'(x) была положительна на этом интервале, за исключением лишь отдельных точек, где эта производная может обращаться в нуль. Для того чтобы функция убывала на интервале, необходимо и достаточно, чтобы ее производная была отрицательна на этом интервале, опять же за исключением лишь отдельных точек, где производная может равняться нулю.

Геометрически этот факт почти очевиден. Производная, как известно, равна тангенсу угла наклона касательной к оси Ox. Если функция возрастает, то при движении слева направо ее график поднимается, а график убывающей функции опускается (рис. 2 и 3). Ясно, что в первом случае касательная к графику образует с осью Ox острый угол, а во втором случае -  тупой. Лишь в отдельных точках касательная может оказаться горизонтальной, т.е. производная в соответствующих точках обратится в нуль.

Рис. 2

Рис. 3


ВПИСАННЫЕ И ОПИСАННЫЕ ФИГУРЫ


Многоугольник называется вписанным в выпуклую кривую, а кривая – описанной около многоугольника, если все вершины многоугольника лежат на кривой (рис. 1). Многоугольник называется описанным вокруг выпуклой кривой, а кривая – вписанной в многоугольник, если каждая его сторона касается кривой. Если же кривая касается всех прямых, на которых лежат стороны многоугольника, причем некоторых из них она касается в точках, не принадлежащих сторонам, то она называется вневписанной. В качестве кривой чаще всего рассматривается окружность. Так, например, всякий треугольник имеет одну описанную окружность, одну вписанную и три вневписанных (рис. 2).