Энциклопедический словарь юного математика (Савин) - страница 73

Если A,B,C,D - четыре точки проективной плоскости, никакие три из которых не лежат на одной прямой, и A',B',C',D' - другие четыре точки этой плоскости, из которых также никакие три не лежат на одной прямой, то существует, и притом только одно, проективное преобразование, которое переводит A,B,C,D соответственно в A',B',C',D'. Пользуясь перечисленными свойствами проективных преобразований, можно решать различные геометрические задачи.

Задача 10. Доказать, что точки M',N',P',Q' на рис. 26 лежат на одной прямой.

Рис. 26

Решение. Пусть p - проективное преобразование, переводящее K' и L' в несобственные точки; мы получим (в евклидовой плоскости) расположение точек, показанное на рис. 26 справа. В этом случае точки M,N,P,Q, очевидно, лежат на одной прямой (на средней линии полосы между прямыми l>1 и l>2). Применяя обратное преобразование p>-1 мы заключаем, что и на рис. 26 слева точки M',N',P',Q' лежат на одной прямой (поскольку при проективном преобразовании p>-1 сохраняется прямолинейное расположение точек).

Все рассмотренные выше преобразования сохраняли прямолинейное расположение точек (на евклидовой или на проективной плоскости). Иначе говоря, система всех прямых линий на плоскости переводится снова в эту же систему линий. Существует интересный класс преобразований, который обладает аналогичным свойством по отношению к другой системе линий. Именно: рассмотрим на плоскости (евклидовой) систему, состоящую из всех прямых линий и всех окружностей. Преобразования, которые эту систему линий переводят снова в эту же систему, называются круговыми преобразованиями. Иначе говоря, прямая переходит при круговом преобразовании либо снова в прямую, либо в некоторую окружность (и то же справедливо для окружности). Чуть ниже мы уточним одно соглашение относительно евклидовой плоскости, которое требуется при рассмотрении круговых преобразований, но вначале рассмотрим один важный пример кругового преобразования - так называемую инверсию.

Пусть задана некоторая точка O плоскости и некоторое положительное число R. Геометрическое преобразование, которое каждую отличную от O точку A плоскости переводит в такую точку A' луча OA, что |OA|·|OA'| = R>2, называется инверсией с центром O и радиусом R (рис. 27). Название «радиус» инверсии объясняется тем, что каждая точка окружности с центром O и радиусом R, очевидно, остается неподвижной при этом преобразовании (т. е. переходит в себя). Точки, лежащие внутри этой окружности (называемой окружностью инверсии), переходят в точки, лежащие вне ее, и наоборот. На этом основании инверсию часто называют симметрией относительно окружности. Инверсия является круговым преобразованием: каждая прямая или окружность переходит снова в прямую или окружность (рис. 28). Заметим теперь, что точка