Энциклопедический словарь юного математика (Савин) - страница 75


ГЕОМЕТРИЯ


Геометрия – одна из наиболее древних математических наук. Первые геометрические факты мы находим в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.), а также в других источниках. Название науки «геометрия» - древнегреческого происхождения. Оно составлено из двух древнегреческих слов ge - «Земля» и metreo -  «измеряю».


Возникновение геометрических знаний связано с практической деятельностью людей. Это отразилось и в названиях многих геометрических фигур. Например, название фигуры трапеция происходит от греческого слова trapezion - «столик», от которого произошло также слово «трапеза» и другие родственные слова. Термин «линия» возник от латинского linum - «лен, льняная нить».

Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом (см. Аксиоматика и аксиоматический метод). Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами. Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.

В замечательной книге «Диалектика природы» Ф. Энгельс определил геометрию как науку о пространственных формах окружающего нас реального мира, т.е. как часть математики, изучающую свойства пространства. Это философское определение полностью отражало состояние геометрии в то время, когда жил и работал Ф. Энгельс. Но в наше время возникли и оформились новые важные разделы геометрии. Каждый из этих разделов имеет свою специфику, которая уже не всегда укладывается в определение геометрии, данное в прошлом веке Ф. Энгельсом. Крупный советский геометр академик А. Д. Александров, которому принадлежат работы не только по геометрии, но и в области философии математики, расширил рамки энгельсовского определения, сказав, что геометрия изучает пространственные и пространственноподобные формы и отношения реального мира. Что это значит и какое это имеет значение для школьной геометрии, попытаемся раскрыть в этой статье.

В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием «Начала» (см, Евклид и его «Начала»). В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Например, таким пособием был учебник А. П. Киселева, по которому советская школа работала до середины этого столетия.