Если не вдаваться в детали, эта теорема гласит, что если площадь под кривой С равна А, то градиент кривой А равен С. Чтобы было понятнее, вспомните о том, что кривые, площади и градиенты записываются в виде уравнений. С — это кривая, которая также имеет свое уравнение. С помощью исчисления мы можем вывести уравнение А для площади, лежащей под этой кривой. Основная теорема исчисления гласит, что производная (или градиент) уравнения А равна С.
Давайте посмотрим, как это работает, когда С — это прямая y = 2x, представленная на рисунке ниже. Площадь треугольника равна произведению половины основания на высоту. (Мы могли бы вывести эту формулу с помощью бесконечно малых величин, но нам не нужно этого делать, поскольку она уже известна.) Следовательно, площадь А под линией от 0 до х равна х/2 × 2x, или x>2, что дает уравнение площади под линией А = x>2. Но это же уравнение описывает и кривую на рисунке справа — параболу. Вспомните размещенный немного выше график, на котором показано, как определение градиента кривой дает возможность перейти от кривой к прямой линии. На рисунках ниже показано, как вычисление площади под кривой позволяет перейти от прямой к параболе. Следовательно, градиент и площадь — это две стороны одной медали.
Вычисление площади под прямой y = 2x и ее отображение в виде кривой
Исчисление позволяло Ньютону взять уравнение, определяющее положение объекта, и вывести из него другое уравнение, описывающее мгновенное значение скорости этого объекта. Кроме того, благодаря исчислению он мог взять уравнение мгновенного значения скорости объекта и вывести из него другое уравнение, описывающее его положение. Исчисление предоставляло в распоряжение Ньютона те математические инструменты, с помощью которых он разработал законы динамики. Ньютон называл переменные своих уравнений флюентами, а градиенты — флюксиями и обозначал их буквами
и
с точками сверху.
Когда после двух лет пребывания в Линкольншире Ньютон вернулся в Кембридж, он никому не рассказал о методе флюксий, о чем впоследствии очень сожалел. На континенте над созданием аналогичной системы работал Готфрид Лейбниц, немец по рождению, являющийся человеком вне границ — юристом, дипломатом, алхимиком, инженером и философом. Кроме того, еще и математиком, который придавал большое значение системе обозначений. Символы, введенные им для своей системы, были более понятны, чем символы Ньютона, — именно их мы и используем до сих пор.
Лейбниц ввел обозначения dx и dy для бесконечно малой разности между значениями