Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры (Беллос) - страница 146

Д’Аламбер был прообразом французского ученого-интеллектуала, роль которого в наше время с удовольствием играет Седрик Виллани.

Во второй раз я встретился с Виллани в Париже. С 2009 года он возглавляет Институт Анри Пуанкаре — элитный французский математический институт, расположенный среди университетских зданий в Латинском квартале Парижа. В кабинете ученого царит уютный беспорядок из книг, бумаг, кофейных чашек, наград, головоломок и геометрических фигур. Внешность Виллани совсем не изменилась со времени нашей первой встречи на Международном конгрессе математиков два года тому назад: бордовый галстук, синий костюм-тройка и металлический паук, сверкающий на отвороте пиджака. Седрик сказал, что этот образ сформировался еще тогда, когда ему было двадцать с лишним лет. Сначала он носил рубашки с широкими рукавами, затем с кружевами, после чего пришел черед цилиндра… «Это был своего рода научный эксперимент, в ходе которого постепенно возникло ощущение “это и есть я”». А что насчет паука? Виллани нравится его неоднозначность. «Одни считают, что паук — это материнский символ. По мнению других, паутина — это символ Вселенной, или паук — великий архитектор мироздания, своего рода способ персонифицировать Бога. Пауки не оставляют людей безразличными. Реакция наступает мгновенно». «Паук — это архетип, имеющий множество разных интерпретаций, — подумал я, — подобно тому как математика — абстрактный язык, имеющий множество областей применения».

Дифференциальные уравнения с частными производными — и есть область научных интересов Виллани. Он утверждает, что, хотя этим уравнениям уже почти триста лет, их «по-прежнему понимают достаточно плохо. Создается впечатление, что за каждым уравнением с частными производными стоит своя теория. Существует множество подразделов таких уравнений при совсем небольшой общей базе и полном отсутствии общей классификации. Многие пытались их классифицировать, но даже лучшие специалисты потерпели неудачу». Дифференциальное уравнение с частными производными, которому Виллани посвящает большую часть своего времени, — это уравнение Больцмана, ставшее темой его докторской диссертации, а впоследствии — частью той работы, за которую он получил Филдсовскую премию. Виллани и сейчас относится к этому уравнению с любовью и нежностью. «Это как первая любовь, — признаётся он. — Это первое уравнение, на которое смотришь и думаешь, что оно самое прекрасное в мире». Полюбуйтесь им еще раз:

Уравнение Больцмана относится к области статистической механики — раздела математической физики, изучающего зависимость между микроскопическим поведением отдельных молекул и макроскопическими свойствами, такими как температура и давление. Это уравнение описывает, как рассеивается облако газа, посредством анализа вероятности нахождения его молекул в определенной точке, при определенной скорости и в определенное время