Начнем доказательство с рассмотрения n + 1 линий, как показано на схеме 1 ниже. (Очевидно, что для иллюстрации данного примера для числа n нужно выбрать какое-то значение, поэтому мы должны проследить за тем, чтобы наше доказательство было применимо к любому числу n.)
Если удалить одну линию, у нас получится рисунок с количеством линий n, показанный на схеме 2. Предположим, рисунок с количеством линий n можно сделать двухцветным, как на схеме 3. Теперь давайте восстановим линию, убранную на первом шаге (схема 4), и с одной ее стороны поменяем цвет на противоположный, другими словами — белые фрагменты сделаем заштрихованными, а заштрихованные — белыми. В результате каждый сектор над линией расположен рядом с сектором под линией, имеющим другой цвет. Следовательно, у нас пролучился двухцветный рисунок с количеством линий n + 1 (схема 5).
Доказательство теоремы о двухцветном рисунке методом индукции
Иными словами, мы продемонстрировали, что второе утверждение истинно. Процесс доказательства методом индукции завершен: все рисунки могут быть двухцветными. (Это доказательство распространяется только на рисунки, образованные посредством вычерчивания линий на квадратном листе. То же самое касается и любого фигурного рисунка с «завитушками», когда перо начинает и прекращает двигаться в одной и той же точке, но по мере перемещения может рисовать петли, спирали и пересечения любой сложности. Однако это утверждение требует более сложного доказательства.)
Труд Евклида «Начала» стал самым важным текстом в истории математики, и не только потому, что он раскрыл информацию о простых числах, треугольниках и т. д., но и благодаря тому, как именно это было сделано. Красота этого текста состоит в его строгости. Евклид весьма скрупулезен. Он ничего не упрощает, не дает никаких оценок и не делает заявлений, которые не может доказать. Если вы согласитесь с тем, что десять исходных предположений Евклида верны, то вы должны принять и истинность всех 465 теорем, сформулированных в книге. «Начала» — это образец применения аксиоматического метода, свидетельство силы дедуктивного мышления.
Говорят, что «Начала» Евклида переиздавались на протяжении большего периода и в большем количестве экземпляров, чем любая другая книга, за исключением Библии. Это очень уместное сравнение, поскольку более двух тысячелетий труд Евклида считался священным текстом, а аксиоматический метод принимался в качестве догмы. Однако в XVII веке появились первые признаки «нечестивости». Евклид полагался на аксиомы и определения, которые по самой своей сути не требовали доказательств и, разумеется, не содержали внутренних противоречий. Но, как мы видели в предыдущей главе, бесконечно малой величине, или величине, которая представляет собой одновременно и нечто, и ничто, свойственна именно такая внутренняя противоречивость. Ньютон и его современники использовали концепцию бесконечно малых величин, поскольку она позволила им доказать множество новых теорем, хотя им и приходилось закрывать глаза на противоречие с догматами Евклида, которые это за собой влекло.