Первая цифра числаn/Первая цифра числа 2n/Процент чисел в распределении Бенфорда
1/2 или 3/30,1
2/4 или 5/17,6
3/6 или 7/12,5
4/8 или 9/9,7
5/1/7,9
6/1/6,7
7/1/5,8
8/1/5,1
9/1/4,6
Предположим, S — это массив данных, подчиняющихся закону Бенфорда. Давайте умножим на два каждое число, входящее в массив S, и обозначим новый массив чисел буквой T. Согласно таблице, числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества чисел в массиве; числа, первая цифра которых 6, — 6,7 процента, 7, 8 и 9 — 5,8; 5,1 и 4,6 процента соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9 + 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9, умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице. Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует закону Бенфорда!
Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при этом сохраняется. Я выбрал умножение на 2, поскольку это самый простой множитель, но с таким же успехом можно было бы взять в качестве множителя 3, или 1,6, или число π, или какое-либо еще — закон Бенфорда действовал бы, так или иначе. Под любое изменение масштаба распределение Бенфорда перенастраивается, как будто это делает рука самого Бога.
В течение нескольких десятилетий после открытия закона Бенфорда он считался не более чем аномалией, трюком из шоу иллюзионистов, нумерологией, но никак не математикой. Однако в 90-х годах ХХ столетия профессор Технологического института штата Джорджия Тед Хилл решил найти теоретическое обоснование распространенности этого закона. Сейчас ученый живет в городе Лос-Осос; это чуть дальше вдоль побережья Тихого океана от того места, где обосновался Даррелл Доррелл. Тед — бывший солдат, высокий, широкоплечий стройный мужчина с бритой головой и седыми усами, сохранивший армейскую выправку. Когда я приехал к нему, он повел меня в небольшой деревянный домик в конце сада, из окон которого открывался вид на океан и два национальных парка. В камине потрескивали дрова. Тед назвал этот домик «математической дачей». Это глобальный центр исследования закона Бенфорда.
Первый серьезный результат, полученный Тедом Хиллом, — это доказательство того, что при существовании некой универсальной закономерности распределения первых цифр оно подчиняется исключительно закону Бенфорда. То есть распределение первых цифр по Бенфорду — единственное, которое не меняется в случае изменения масштаба. Этот вывод позволил Теду изобрести игру, в которую мы с ним сыграли.