Маленькая книга о чёрных дырах (Габсер, Преториус) - страница 11

времени. И одним из таких конечных пунктов окажется сам вокзал в Принстоне, ровно в 1 час пополудни по принстонскому времени. Вы окажетесь в этой точке через час после «отправления» вашего поезда, если вы, как знаменитый «рассеянный с улицы Бассейной», умудрились сесть в отцепленный вагон, который весь этот час простоял на одном месте. Получилось, что в 1 час пополудни по принстонскому времени вы «приехали» в Принстон – ведь ваша система отсчета совпадает с системой отсчета принстонского вокзала, а ваши часы идут в точности так же, как и вокзальные. А вот если вы действительно куда-то поехали, ваши часы пойдут медленнее вокзальных. И когда через час вашего времени вы сойдете на платформу, вы увидите, что неподвижные часы показывают более позднее время, чем должно быть по вашим. Этот эффект, известный как замедление времени, в пространстве-времени Минковского изображается искривлением гиперболы кверху в направлении оси времени, тем более сильным, чем больше вы отдаляетесь от начала вашего движения.[1] А пространство-время Минковского даже называют иногда гиперболической геометрией.


Рис. 1.2. Поезда, отправляющиеся из Принстона. Кривая, объединяющая точки, в которые пассажиры попадают через час собственного времени, – гипербола.


В пространстве-времени Минковского постоянную скорость света мы визуализируем световыми лучами под углом ровно 45° относительно вертикальной оси времени. Можно заметить, что гипербола, образованная всеми возможными конечными пунктами наших одночасовых путешествий, целиком лежит внутри области пространства-времени, ограниченной двумя световыми лучами, выходящими из начала координат. Так в пространстве-времени Минковского отражается тот факт, что никакой поезд не способен двигаться быстрее света. Может показаться, что наши разговоры о замедлении времени не имеют отношения к преобразованиям Лоренца. Сейчас мы покажем, что это совсем не так. Вспомним, что мы когда-то решили назвать систему отсчета поезда системой А, а систему отсчета, связанную с Землей, – системой Б. Пусть Алиса проводит один час в системе А по дороге из Принстона в Нью-Йорк. А тем временем Боб и его друзья остаются неподвижными по отношению к Земле. Как они могут узнать время прибытия Алисы? Может, ей стоит позвонить им с вокзала? Вряд ли это разумно: ведь радиоволны, несущие ее голос, распространяются со скоростью света, а значит, чтобы узнать время ее прибытия, Бобу и его друзьям придется проделать вычисления, в которых надо будет учесть время приема звонка Алисы, скорость распространения сигнала и расстояние до Нью-Йорка. Так как Бобу лень заниматься такими сложными подсчетами, он придумывает лучший способ: он сверяет – синхронизирует – свои часы с часами своего друга Билла. Затем Боб и Билл выбирают себе позиции на платформах в Принстоне и Нью-Йорке соответственно, и Боб засекает время отправления Алисы, а Билл – время ее прибытия. Нужды в телефонном звонке больше нет. Правда, может показаться, что трудно надежно синхронизировать часы у наблюдателей, далеко расположенных друг от друга. Для этого можно предложить следующий способ: Боб и Билл встречаются на полпути между Принстоном и Нью-Йорком, синхронизируют свои часы в одной и той же точке пространства, а потом с одинаковой скоростью отправляются на свои вокзалы, задолго до того, как Алиса садится в свой поезд. Во всей этой истории с поездкой Алисы система