Маленькая книга о чёрных дырах (Габсер, Преториус) - страница 10

Так вот, в соответствии с теорией электромагнетизма, этого не произойдет! Скорость луча, измеренная Бобом, будет в точности равна все той же постоянной скорости света, которую Алиса получит, измеряя движение того же импульса относительно себя.

Как это может быть? Ответ заключается в том, что Алиса и Боб по-разному измеряют ход времени и длину. В подробностях эта процедура измерения выражается преобразованиями Лоренца – математическим описанием связи времени и длины в системе А с временем и длиной в системе Б. Преобразование Лоренца легко записать в терминах пространства-времени Минковского. До того как мы провели преобразования Лоренца (левая часть рис. 1.1), мы можем считать систему Б покоящейся, а систему А движущейся вперед. После выполнения преобразований Лоренца (правая часть рис. 1.1) система А становится покоящейся, а система Б движется назад! Преобразования Лоренца, таким образом, просто описывают смену точки зрения: от позиции Боба, который считает покоящейся свою систему отсчета, к позиции Алисы, для которой покоится как раз ее система.

Главные следствия преобразований Лоренца – замедление времени и сокращение длины. Мы сначала попробуем объяснить замедление времени – это проще. Представьте, что в полдень пятницы вы садитесь в поезд на станции Принстон. Для удобства будем считать, что эта точка во времени и пространстве соответствует началу координат в пространстве Минковского, то есть точке, где пересекаются оси t и x. Через станцию Принстон идут как скорые, так и обычные поезда, причем некоторые идут на север, в Нью-Йорк, а некоторые на юг, в Филадельфию; вы можете сами выбрать вид поезда и направление. Ваш план такой: сесть в поезд, ехать в нем ровно час (по вашим часам), затем сойти и отметить расстояние, на которое вы отъехали. Ясно, что если выбрать скорый поезд, то уедешь дальше. Но будьте осторожны: можно ли считать, что если поезд идет вдвое быстрее, он увезет вас вдвое дальше? Не забывайте, что вы едете ровно один час по вашим часам, которые тоже едут с вами. А скорость поезда будут измерять наблюдатели, которые стоят на неподвижной платформе и часы у которых идут немного иначе, чем у вас, – ведь они находятся в другой системе отсчета.

Где же вы тогда окажетесь через час? Возьмем более общий случай: пусть вы пришли на вокзал в Принстоне с друзьями. Каждый из вас выбрал себе какой-нибудь поезд, и все выехали из Принстона в одно и то же время. Где каждый из вас окажется через час? Ответ: каждый из вашей компании очутится в какой-то точке гиперболы в пространстве-времени Минковского (рис. 1.2). Эта гипербола – множество всех возможных конечных точек, в которых пассажиры разных поездов окажутся ровно через час