Маленькая книга о чёрных дырах (Габсер, Преториус) - страница 26

Наше обсуждение «обычного» тяготения может создать у вас впечатление, что пространство остается идеально плоским, тогда как время в различных его точках идет с разной скоростью. Это не совсем так. В действительности, в областях, где время идет медленнее, пространство немного «раскрывается». Чтобы понять, что это значит, представьте себе, что Земля заключена в идеальную сферическую оболочку, площадь которой вы можете тщательно измерить. Далее, вы измеряете радиус этой сферы. (Возможно, для этого придется просверлить Землю до самого ее центра, но будем считать, что мы достигли соответствующего уровня техники и можем это сделать.) Естественно, вы обнаружите, что площадь A и радиус r сферы связаны формулой A = 4π. Однако так как внутри сферы находится Земля, r будет чуть больше относительно A, чем следовало бы из соотношения A = 4π. Другими словами, объем сферы, заключающей в себе Землю, немного больше объема пустой сферы с той же площадью поверхности. Как и гравитационное красное смещение, расширение пространства вблизи массивных тел проявляется очень слабо, если мы ограничиваем рассмотрение обычным слабым полем тяготения. Фактически оказывается, что наши пространственные измерения (удобным образом определенные) расширяются примерно на ту же величину, на которую замедляется ход времени. Может показаться, что все наши предыдущие рассуждения о падающих телах были неверными, мы ведь предполагали, что гравитационное красное смещение – это только эффект тяготения. Но дело спасает то, что наблюдатели, медленно движущиеся по отношению к гравитирующим телам, гораздо более чувствительны к замедлению времени, чем к расширению пространства. Мы же договорились иметь дело с «обычным тяготением», а в этом случае, в частности, требуется, чтобы никакое гравитирующее тело не имело плотности даже отдаленно сравнимой с той, которая достаточна для образования черной дыры. Чтобы понять, что произойдет, если мы откажемся от этого упрощающего предположения, нам придется глубже влезть в дебри дифференциальной геометрии. Дифференциальная геометрия (по крайней мере, та ее часть, которая нам нужна) стоит на трех китах: метриках, геодезических и кривизне. Все эти понятия можно проиллюстрировать, рассматривая любую искривленную поверхность, например поверхность Земли. Метрика – это просто, потому что тут всё дело в расстоянии; во всяком случае, поначалу кажется, что это просто. Например, мы знаем, что от Вашингтона до Сан-Франциско примерно 2440 миль. Под этим мы подразумеваем, что, если вы проделываете это путешествие по поверхности Земли (или чуть выше поверхности, если вы туда летите), то кратчайшее расстояние от Вашингтона до Сан-Франциско составит 2440 миль. Но если мы будем рассматривать эти города как две точки в пространстве, они окажутся чуть ближе, на расстоянии около 2400 миль. Это незначительное различие связано с тем, что если бы мы могли двигаться сквозь Землю по прямой, мы бы немного выиграли в расстоянии по сравнению с движением по сферической поверхности. Если перемещаешься по поверхности, твой путь неизбежно будет искривлен; чтобы найти полное расстояние, естественно разбить путь на небольшие отрезки, каждый из которых будет почти прямым, а потом сложить все длины этих отрезков. Термин «дифференциальный» относится как раз к этому процессу деления на кусочки и их измерению. Понятие метрики в дифференциальной геометрии и должно помочь нам определить длины кусочков. Если мы хотим вычислить общую длину пути, дифференциальная геометрия предлагает нам просто сложить все длины кусочков, а это упражнение в интегрировании.