т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фундаментальным достижениям молекулярной биологии (рис. 4).
Рис. 4. Каталитические петли соответствуют нелинейным членам. В задаче с одной независимой переменной нелинейность означает, что имеется по крайней мере один член, содержащий независимую переменную в степени выше 1. В этом простейшем случае нетрудно проследить за тем, какая связь существует между нелинейными членами и потенциальной неустойчивостью стационарных состояний.
Предположим, что для независимой переменной Х выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f>+(X), соответствующую прибыли («наработке» вещества), и f>-(X), соответствующую убытку (расходу вещества), каждая из которых положительна или равна 0, т. е. представить в виде f(X)=f>+(X)—f>-(X). Стационарные состояния dX/dt=0 соответствуют значениям X, при которых f>+(X)=f>-(X).
Равенство f>+(X)=f>-(X) означает, что стационарные состояния можно найти, построив точки пересечения графиков функций f>+ и f>-. Если f>+ и f>- линейны, то их графики могут пересекаться только в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответствующего стационарного состояния.
Возможны следующие четыре случая:
SI. Стационарное состояние устойчиво относительно отрицательных флуктуации и неустойчиво относительно положительных флуктуации. Если систему слегка отклонить влево от SI, то положительная разность между f>+ и f>- вынудит систему вернуться в SI. Если же систему отклонить вправо от SI, то отклонение будет нарастать.
SS. Стационарное состояние устойчиво как относительно положительных, так и относительно отрицательных флуктуации.
IS. Стационарное состояние устойчиво только относительно положительных флуктуаций.
II. Стационарное состояние неустойчиво как относительно положительных, так и относительно отрицательных флуктуаций.
4. За порогом химической неустойчивости
Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экспериментальные исследования ведутся во многих институтах и лабораториях. Как мы увидим, эти исследования представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.
В сильно неравновесных условиях за порогом химической неустойчивости происходят различные новые явления. Для того чтобы описать их подробно, полезно начать с упрощенной теоретической модели, разработанной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это название так и прижилось в научной литературе. (Географические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опишем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчивость (см. рис. 3). Вещество