а другое — с бедным содержанием того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.
Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттракторы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных уравнений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что первая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обнаружены новые типы аттракторов. Они появляются только при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так называемые странные аттракторы, которым уже не соответствует периодическое движение.

Рис. 8. а) Концентрация иона бромида в реакции Белоусова— Жаботинского в моменты времени t>1 и t>1+T (см.: Simoyi R. Н., Wolf A., Swinney Н. L. Phys. Rev. Letters, 1982, 49, p. 245; Hirsch J., Condensed Matter Physics и по данным численных расчетов из Physics Today, 1983, May, p. 44—52).
6) Траектории аттрактора, вычисленные Хао Байлинем для «брюсселятора» при периодическом подводе извне компоненты Х (личное сообщение).
На рис. 8 представлены результаты численных расчетов Хао Байлиня, дающие общее представление об очень сложной структуре такого странного аттрактора для модели, обобщающей «брюсселятор» на случай периодического подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых биологических системах.
Рис. 9. Схема химического реактора, используемого при исследовании колебаний в реакции Белоусова—Жаботинского (однородность реакционной смеси обеспечивает перемешивающее устройство). В реакции участвуют более тридцати продуктов и промежуточных соединений. Эволюция различных путей реакции зависит (помимо других факторов) от концентраций исходных веществ, регулируемых насосами на входе в реактор.
В неорганической химии наиболее известным примером колебательной системы является реакция Белоусова—Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая название орегонатор, была предложена Нойесом и сотрудниками. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова—Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии соответствующего катализатора — церия, марганца или ферроина.