Порядок из хаоса (Пригожин, Стенгерс) - страница 151

Еще одним примером спонтанной «адаптивной организации» системы, ее «подстройки» к окружающей среде может служить чувствительность сильно неравновесных состояний к внешним флуктуациям. Приведем один пример[155] самоорганизации как функции флуктуирующих внешних условий. Простейшей из всех мыслимых химических реакций является реакция изомеризации ADB. В нашей модели вещество А может участвовать и в другой реакции: А+свет→A*→A+тепло (молекула А, поглощая свет, переходит в возбужденное состояние A*, из которого возвращается в основное состояние, испуская при этом тепло). Мы предполагаем, что обе реакции происходят в замкнутой системе, способной обмениваться с внешним миром только светом и теплом. В системе имеется нелинейность, так как превращение молекулы В в молекулу А сопровождается поглощением тепла: чем выше температура, тем быстрее образуется А. Кроме того, чем выше концентрация А, чем сильнее А поглощает свет и преобразует его в тепло, тем выше температура вещества А. Таким образом, А катализирует образование самого себя.

Можно ожидать, что концентрация А, соответствующая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталкиваемся с одним из типичных сильно неравновесных явлений: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может находиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентрациям А. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стационарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. Но это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет случайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосуществование трех стационарных устойчивых состояний.

В таких положениях случайная флуктуация во внешнем потоке, часто называемая шумом, — отнюдь не досадная помеха: она порождает качественно новые типы режимов, для осуществления которых при детерминистических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в любой «естественной системе». Например, в биологических или экологических системах параметры, определяющие взаимодействие с окружающей средой, как правило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация солей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флуктуациям, поступающим из окружающей среды, открывает перед биологическими исследованиями новые перспективы.