Порядок из хаоса (Пригожин, Стенгерс) - страница 170

В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением. Оно описывает, как эволюционирует популяция из N особей с учетом рождаемости, смертности и количества ресурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt=rN(K—N)—mN, где r и m — характерные постоянные рождаемости и смертности, К — «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N=K—m/r, зависящее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения наступает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.

Рис. 20. Эволюция популяции N как функция времени t, описываемая логистической кривой. Стационарное состояние N=0 неустойчиво, а стационарное состояние N=K—т/r устойчиво относительно флуктуации величины N.


Кажущаяся простота логистического уравнения до некоторой степени скрывает сложность механизмов, участвующих в процессе. Мы уже упоминали о внешнем шуме. В случае логистического уравнения он имеет особенно простой смысл. Ясно, что при учете одних лишь климатических флуктуаций коэффициенты К, т и r нельзя считать постоянными: как хорошо известно, такие флуктуации могут разрушить экологическое равновесие и даже обречь популяцию на полное вымирание. Разумеется, в системе начинаются новые процессы, такие, как создание запасов пищи и образование новых колоний, которые заходят в своем развитии настолько далеко, что позволяют в какой-то мере избежать воздействия внешних флуктуации.

Есть в логистической модели и другие тонкости. Вместо того чтобы записывать логистическое уравнение в непрерывном времени, будем сравнивать состояние популяции через заданные интервалы времени (с интервалом, например, в год). Такое дискретное логистическое уравнение представимо в виде N>t+1=N>t(l+r[1—N>t/K]), где N>t и N>t+1 — популяции с интервалом в один год (членом, учитывающим смертность, мы пренебрегаем). Р. Мэй[170] обратил внимание на одну замечательную особенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0£2 в дискретном случае так же, как и в непрерывном, наблюдается монотонное приближение к равновесию. При значениях параметра 2<r<2,444 возникает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших значениях параметра r возникают четырех-, восьмилетние и т. д. циклы, пока периодические режимы не переходят (при значениях