Порядок из хаоса (Пригожин, Стенгерс) - страница 208

Динамическое состояние точечной частицы (материальной точки) определяется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмерному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазовое пространство. Геометрическое представление динамических состояний одной точечной частицы обобщается на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо указать nr6 чисел, или точку в 6n-мерном фазовом пространстве. Эволюции во времени системы п частиц будет соответствовать траектория в фазовом пространстве.

Мы уже говорили о том, что точные начальные условия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ансамблем точек, т. е. «облаком» точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содержать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматриваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представляющих точек в фазовом пространстве. Пусть r(q>1, ..., q>3n, p>1, ..., p>3n) — плотность распределения представляющих точек в фазовом пространстве, где q>1, ..., q>3n координаты п точек, a p>1, ..., p>3n импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динамическую систему в окрестности точки q>1, ..., q>3n, p>1, ..., p>3n фазового пространства.

При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траектория точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией является точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фазовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ансамбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень наших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находиться система. Если бы плотность была равномерно распределена по всему фазовому пространству, то утверждать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.