Порядок из хаоса (Пригожин, Стенгерс) - страница 228

>i. Согласно нашей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=t>i до t=2. На рис. 39 мы видим, что, когда t>i отходит в прошлое, ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз t>i-=1, 0, —1 и, наконец, t>i=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.

Рис. 41. Растягивающиеся (последовательность А) и сжимающиеся (последовательность С) слои пересекают различное число клеток («ящиков»), на которые разделено фазовое пространство «преобразования пекаря». Все «квадраты», принадлежащие данной последовательности, относятся к одному моменту времени t=2, но число клеток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы t>i.


Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающийся слой (последовательность С). Обратим внимание на то, что по мере сдвига t>i в прошлое растягивающийся слой занимает все большее число ячеек: при t>i=—1 он занимает 4 ячейки, при t>i=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при t>i→∞.

Сжимающийся слой в отличие от растягивающегося при любых t>i всегда локализован в 4 ячейках. Это приводит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда t>i уходит в прошлое. Таким образом, различие между динамической системой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бесконечно много ячеек. Приготовить или наблюдать можно лишь такие меры или вероятности, которые в пределе при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои[236]. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точке в неустойчивой системе, соответствовали бы бесконечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе начало выступает в роли принципа отбора.

В классической схеме начальные условия были произвольными. Для неустойчивых систем произвол исключается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вычисления информационного содержания мы прибегли к последовательному делению ячеек). Начальные условия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настолько важным, что мы хотели бы привести еще один пример, на этот раз связанный с динамикой корреляций.